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Abstract
Background Intracranial aneurysms at the posterior communicating artery (PCOM) are known to have high rupture rates
compared to other locations. We developed and internally validated a statistical model discriminating between ruptured and
unruptured PCOM aneurysms based on hemodynamic and geometric parameters, angio-architectures, and patient age with the
objective of its future use for aneurysm risk assessment.
Methods A total of 289 PCOM aneurysms in 272 patients modeled with image-based computational fluid dynamics (CFD) were
used to construct statistical models using logistic group lasso regression. These models were evaluated with respect to discrim-
ination power and goodness of fit using tenfold nested cross-validation and a split-sample approach to mimic external validation.
Results The final model retained maximum and minimum wall shear stress (WSS), mean parent artery WSS, maximum and
minimum oscillatory shear index, shear concentration index, and aneurysm peak flow velocity, along with aneurysm height and
width, bulge location, non-sphericity index, mean Gaussian curvature, angio-architecture type, and patient age. The correspond-
ing area under the curve (AUC) was 0.8359. When omitting data from each of the three largest contributing hospitals in turn, and
applying the corresponding model on the left-out data, the AUCs were 0.7507, 0.7081, and 0.5842, respectively.
Conclusions Statistical models based on a combination of patient age, angio-architecture, hemodynamics, and geometric char-
acteristics can discriminate between ruptured and unruptured PCOM aneurysms with an AUC of 84%. It is important to include
data from different hospitals to create models of aneurysm rupture that are valid across hospital populations.
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Introduction

The posterior communicating artery (PCOM) is a common
site for aneurysm development. Aneurysms at this location
account for approximately 25% of all intracranial aneurysms
[1]. They have a larger rupture risk than aneurysms at other
locations [2] such as the middle cerebral artery (MCA) or
other segments of the internal carotid artery (ICA) [3, 4]. As
such, clinicians often need to decide whether or not to treat
PCOM aneurysms, but reliable aneurysm-specific parameters
to guide and support these decisions are lacking.

Previously published prediction models for aneurysm rup-
ture include the PHASES score [5] and a score developed in
Japanese cohorts [6]. Furthermore, a multivariate logistic re-
gression model for discrimination between ruptured and
unruptured aneurysms based on hemodynamic andmorpholog-
ical parameters has been presented [7]. The three models were
developed from data of aneurysms at different locations.
Furthermore, both the PHASES and the Japanese score do not
include hemodynamic and morphological information (besides
aneurysm size). The multivariate model is based on a compar-
atively small sample size and has not been validated so far.

In a previous study, we found that hostile hemodynamic
conditions characterized by strong and concentrated inflow
jets, concentrated regions of elevated wall shear stress
(WSS), oscillatory WSS, and complex unstable flow patterns
were associated with rupture of PCOM aneurysms and that
such conditions were more commonly found in bifurcation-

type angio-architectures [8]. In the current paper, we extend
that prior work by creating and evaluating models that dis-
criminate between PCOM aneurysm rupture status based on
numerous demographic, anatomical, geometrical, and hemo-
dynamic features. Once validated in the future with prospec-
tive longitudinal data, these models could potentially be used
to improve current risk assessment of PCOM aneurysms.

Methods

Patient and image data

All aneurysms at the PCOM from our database of image-
based cerebral aneurysm models, included in a previous pub-
lication [8], were analyzed. Our database includes patient and
image data of patients who underwent cerebral angiography.
The cohort’s characteristics are summarized in Table 1. There
were 300 patients from 6 different hospitals harboring 322
PCOM aneurysms with known rupture status. After exclusion
of fusiform aneurysms, infundibula, and one further case be-
cause it was the only case in one of our angio-architecture
groups (see BStatistical modeling^ sub-section), the sample
size was reduced to 289 aneurysms in 272 patients. The over-
all prevalence of ruptured aneurysms for the 289 aneurysms
was 49% (142 ruptured and 147 unruptured). Of the 272 pa-
tients, 17 had two PCOM aneurysms (2 ipsilateral, 15 bilater-
al, see Fig. 1 in the Online Supplementary Material for the

Table 1 Cohort characteristics

Whole cohort (cases with known rupture status
and location; fusiform aneurysms excluded)

Number of patients 1265

Number of aneurysms (ruptured/unruptured) 1931 (558/1373)

Patient age (mean ± SD) (of 1065 patients with known age) 56.21 ± 13.82

Patients with multiple aneurysms 358

Gender ratio (of 1076 patients with known gender) 810 F, 266 M

Number of patients with SAH 558

Distribution by location ACA= 65 (3.37%)

ACOM= 278 (14.40%)

BA = 136 (7.04%)

ICA= 741 (38.37%)

MCA= 354 (18.33%)

PCOM= 312 (16.16%)

VA = 45 (2.33%)

Cohort used for this study Number of patients 272

Number of PCOM aneurysms (ruptured/unruptured) 289 (142/147)

Patient age (mean ± SD) (of 232 patients with known age) 59.09 ± 14.26

Patients with multiple PCOM aneurysms 17

Gender ratio (of 234 patients with known gender) 193 F, 41 M

Number of patients with SAH 161

ACA anterior cerebral artery, ACOM anterior communicating artery, BA basilar artery, ICA internal carotid artery, MCA middle cerebral artery, PCOM
posterior communicating artery, VA vertebral artery
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ipsilateral cases). The majority of aneurysms in our database
came from three contributing hospitals: (1) Mayo Clinic
(mayo), (2) Mt. Sinai Medical Center (sinai), and (3) Inova
Fairfax Hospital (inova). At these three hospitals, there were
40 PCOM aneurysms out of a total of 256 aneurysms from all
locations (16%, mayo), 77 out of 417 (18%, sinai), and 198
out of 1298 (15%, inova). The prevalence of rupture status at
the time of presentation of PCOM aneurysms for these hospi-
tals was 41% (mayo), 51% (sinai), and 52% (inova).
Unfortunately, patient gender and age information were not
available for the mayo cases.

Hemodynamic modeling

Patient-specific computational fluid dynamic (CFD) models
were constructed from 3D angiographic images [9]. The trunk
of the ICA down to the cavernous segment was included in
order to appropriately describe the inflow into the aneurysm.
Arteries were cut perpendicularly to their axes for subsequent
inlet and outlet definition. The vessels were modeled by un-
structured grids with a maximum element size of 0.2 mm.

For the CFD simulations, pulsatile flow conditions derived
from phase-contrast MR measurements in healthy subjects
[10] were scaled with a power-law of the inlet vessel area
[11] and applied as inflow boundary conditions at the proxi-
mal ICA using the Womersley solution [12]. Outflow bound-
ary conditions were set as pressure and flow outlets, consistent
with Murray’s law. Blood was modeled as a Newtonian fluid
with a density of 1.0 g/cm3 and a viscosity of 0.04 P. Vessel
walls were approximated as rigid. The 3D incompressible
Navier-Stokes equations were numerically solved with an in-

house finite element solver [13]. Two cardiac cycles with a
heart rate of 60 beats per minute were computed with 100 time
steps per cardiac cycle. For the hemodynamic characteriza-
tion, results from the second cycle were used.

Post-processing

In a post-processing step, hemodynamic and morphological
variables previously used to compare hemodynamic condi-
tions in ruptured and unruptured PCOM aneurysms were au-
tomatically calculated from the computed flow field and the
3D geometrical model of the aneurysm [14–17]. A total of 22
hemodynamic and 25 geometrical parameters were computed
(see Tables 2 and 3 in the Online Supplementary Material as
well as Fig. 1 for an illustration of selected shape parameters).

Statistical modeling

Prediction models were fitted to the data using logistic group
lasso regression [18]. This approach of regularized regression
results in models where, depending on the magnitude of a
tuning parameter, certain regression coefficients are set to ex-
actly zero. Hence, only variables with a non-zero coefficient
are retained in the final model. Since the penalty term of the
lasso regression penalizes more complex models (models in-
cluding more variables), lasso regression can also be used for
model fitting in situations where the sample size is compara-
bly small relative to the number of variables [19]. Tenfold
cross-validation was used to select the aforementioned tuning
parameter. In this step, the data were split in training and
validation sets for each of the tenfolds, and the optimization

Fig. 1 Illustration of selected shape parameters (NSI, non-sphericity in-
dex; BL, bulge location; MLN, mean surface curvature; Awidth, aneu-
rysm width; Aheight, aneurysm height). Top panel: Aneurysms with low

values of respective variable. Bottom panel: Aneurysms with high values
of respective variable. For the definition of all shape parameters see the
Online Supplementary Material and the references therein

Acta Neurochir (2018) 160:1643–1652 1645



parameter achieving on average the highest area under the
curve (AUC) of the receiver operating characteristic (ROC)
curve in the validation set was selected for the final model. All
22 hemodynamic and 25 morphological parameters as well as
patient age were used for model fitting. Additionally, patient
gender and previously defined angio-architecture classes [8]
were included as categorical variables and coded by dummy
variables with a sum-to-zero constraint (see Table 1 in the
Online Supplementary Material and Fig. 2 for an illustration
of the types of angio-architectures). The columns of the fea-
ture matrix of the continuous parameters were centered and
standardized to unit-norm. The sub-feature matrix for the
dummy variables for the angio-architectures was standardized
using a singular value decomposition [20].

As only one aneurysm belonged to angio-architecture type 8,
this case was excluded for model fitting. Since gender and age
weremissing from themayo data, the sample size was reduced to
245 aneurysms for training a Bcomplete model^ including all
variables. For this reason, a second model was created omitting
these two variables but using the entire sample of 289 aneurysms.

Statistical model evaluation

Themodel’s performancewas evaluated as previously described
[21]. Briefly, its discrimination for rupture status at presentation
and goodness of fit were assessed. Each model’s discrimination
was measured by the AUC of the ROC curve. An Boptimal
threshold^ for classification was selected as the probability cor-
responding to the point on the ROC curve with the smallest
distance to (0,1). Based on this threshold, the model’s accuracy

was evaluated. The goodness of fit was visually estimated by
means of calibration plots [22]. As part of the visualization,
observed outcomes were regressed on the predicted probability
using the loess algorithm with a span parameter of 0.75 [23].

First, the model was internally validated by 160 repetitions of
tenfold nested cross-validation [24]. For each repetition, the pro-
cess of model fitting was performed in part of the data (training
set) and evaluated on the left-out data (validation set). Based on
the evaluation of the fittedmodels in each of the cross-validation
samples, the optimism in the AUCwas estimated and subtracted
from the AUC for the final model [22]. Moreover, it was noted
for how many of the cross-validation samples each of the vari-
ables was retained in the fitted models. The relative frequency of
retention in the cross-validation models can be seen as an indi-
cator for the importance of a variable.

Secondly, for the model excluding patient information, a
split-sample approach was used to mimic external validation.
Aneurysms of patients from one of the three hospitals with the
largest numbers of data were excluded for model fitting and
subsequently used for model evaluation.

All statistical analysis was performedwith scripts written in
the R language.

Results

Complete model

The results from the evaluation and validation of the fitted
models are summarized in Table 2.

Fig. 2 Illustration of defined angio-architectures. Type 1, True PCOM;
Type 2, At ICA-PCOM bifurcation; Type 3, PCOM from fundus; Type 4,
PCOM proximal/detached; Type 5, PCOM proximal/attached; Type 6,

No PCOM visible in 3DRA; Type 7, PCOM distal/detached, Type 8,
PCOM distal/attached
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The best discrimination was achieved for the complete mod-
el (model 1) including patient information (gender and age) in
addition to hemodynamic and morphological parameters, as
well as angio-architecture (AUC = 0.8359, after correction for
optimism AUC= 0.7547). Based on the ROC, the Boptimal
threshold^ for classification of an aneurysm as ruptured or
unruptured was 0.46. For this threshold, the sensitivity was
0.84, the specificity 0.73, positive predictive value (PPV)
0.77, negative predictive value (NPV) 0.81, and the misclassi-
fication error 0.21. If all aneurysms having a predicted proba-
bility greater than the Bdefault threshold^ of 0.5 are classified as
ruptured, the specificity increases to 0.76, but the TPR is re-
duced to 0.78 and the misclassification error increases to 0.23.
The PPV remains the same and the NPV decreases to 0.76.
Both thresholds are indicated in Fig. 3. The calibration plot
for this model (Fig. 3, right) shows a reasonable fit to the data,
although the fitted line deviates slightly from the 45° straight
line corresponding to perfect goodness of fit.

The final model retained the following variables (variables
having non-zero coefficients): maximum and minimum wall
shear stress (WSS), shear concentration index (SCI), maxi-
mum and mean oscillatory shear index (OSI), WSS in the
parent vessel (WSSves), peak velocity (Vmax), aneurysm
height, width, bulge location (BL), non-sphericity index

(NSI), and the mean aneurysm surface curvature (MLN).
The coefficients for these variables are listed in Table 4 in
the Online Supplementary Material. The relative frequencies
of variable retention in the cross-validation samples are pre-
sented in Fig. 4. The minimum frequency of all variables
having non-zero coefficients in the final model was higher
than the maximum frequency of all variables with coefficients
of zero (0.44 vs. 0.29, indicated by the black horizontal line in
Fig. 4). Among the variables retained in the model, OSImax
and NSI had the highest frequency of selection during nested
cross-validation (in 100% of the models).

Model excluding gender and age

The model excluding gender and age (model 2) achieved an
AUC of 0.7920 (Table 2). For the Boptimal threshold^ of 0.47,
the TPR, FPR, and misclassification error were 0.76, 0.30, and
0.27, respectively. The coefficients for this model are listed in
Supplementary Table 4 and the calibration plot in
Supplementary Fig. 2 (top left). In contrast to model 1 that
includes gender and age for model fitting, the aneurysm neck
size (Nsize), the POD entropy describing temporal flow sta-
bility (podent), and the volume-to-ostium ratio (VOR) had
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bration plot (right) for model 1
(complete model). The circle and
triangle on the ROC curve indicate
the value corresponding to a clas-
sification threshold of 0.46 and
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Table 2 Summary of the results for models fitted for subsamples based on hospitals

Model Variables Hospital excluded Sample size AUC AUC nested CV AUC of left-out data Ssize left-out

1 Hem, morph, gender, age, angioarch mayo (missing data) 245 0.8359 0.7547 – –

2 Hem, morph, angioarch – 289 0.7920 0.7297 – –

2a Hem, morph, angioarch mayo 250 0.7679 0.6936 0.5842 39

2b Hem, morph, angioarch sinai 217 0.7928 0.7361 0.7081 72

2c Hem, morph, angioarch inova 118 0.7933 – 0.7507 168

The column BAUC nested CV^ refers to the AUC of the model after subtracting the estimated optimism by nested cross-validation. The sample size
(Ssize) of the left-out data used for evaluation of the models by the split-sample approach is given in the last column

Hem hemodynamic variables, morph morphological variables, angioarch angio-architectures
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non-zero coefficients, whereas WSSmax, OSImean, and an-
eurysm height were not retained in model 2.

Effects of patient population

To evaluate the effects of different hospital populations, three
models excluding gender and age (models 2a, 2b, and 2c)
were fitted by omitting data from each of the three hospitals
in turn (see Table 2). The sample sizes for each of these
models were 250, 217, and 118, respectively. The coefficients
for these models are listed in Table 4 in the Online
Supplementary Material. Variables that were included in all
fitted models (including models 1 and 2) were OSImax and
NSI.

The model built after omitting the mayo data (model 2a)
had anAUC of 0.7679, but when applied to the mayo data that
had been left out, the AUC was only 0.5842 indicating re-
duced discrimination on this external population. In contrast,
the models omitting sinai (model 2b) and inova (model 2c)
data had AUCs of 0.7928 and 0.7933, respectively; when
applying these models to the left-out data, the AUCs were
0.7081 and 0.7507, respectively.

The calibration plots for these models when evaluated in
the left-out data are presented in Supplementary Fig. 2. These
plots indicate a suboptimal fit of model 2a, while reasonably
good fits for models 2b and 2c.

Discussion

The results of this study suggest that statistical models based
on a combination of patient information, angio-architecture,
hemodynamics, and geometric characteristics can discrimi-
nate between ruptured and unruptured PCOM aneurysms with
an AUC of 84%.

Effects of patient’s age and gender

In our study, younger age associated with higher rupture risk,
consistent with previous studies of PCOM aneurysms [25]. The
general association of age and rupture is not clear in the litera-
ture. Older age is assigned higher risk in the PHASES score [5]
and was associated with higher risk of aneurysm growth in a
recent study [26]. However, other studies suggested higher risk
for younger patients in anterior communicating aneurysms [27],
middle cerebral artery aneurysms [28], and in general [29].

It is known that females have a higher incidence of aneu-
rysms both in general and particularly in those located at the
PCOM [30]. The association between gender and risk of an-
eurysm rupture, however, is not clear in the literature [29, 31].
Our results indicate that considering gender does not improve
the discrimination of ruptured and unruptured PCOM aneu-
rysms. Hence, other than gender-related mechanisms seem to
be important for aneurysm rupture at this location.
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Effects of angio-architectures

Angio-architectures types 1–3 and 5 (true PCOManeurysms and
aneurysms involving the PCOMorigin or bifurcation) associated
with higher rupture risk, while types 4, 6, and 7 (resembling
sidewall aneurysms) associated with lower probability of rup-
ture. The frequency of inclusion of angio-architectures in the
nested cross-validation samples was 0.76, indicating that
angio-architectures are important for discrimination. To verify
this finding, a model was fitted excluding angio-architectures.
This model resulted in a reduction of the AUC to 0.8263.

Effects of geometry

Holding all other variables fixed, a higher probability of being
ruptured was associated with larger bulge location and more
elongated shape (less spherical), in agreement with previous
studies [32, 33]. In our sample, a higher rupture risk was also
associated with smaller aneurysm height and width, in con-
trast to previous studies suggesting increased rupture risk with
increasing PCOM aneurysm size [34, 35]. However, in a pre-
viously performed univariate analysis in our data, ruptured
PCOM aneurysms were significantly larger compared to
unruptured aneurysms, which is consistent with the literature
and current clinical knowledge. This finding demonstrates a
difficulty when interpreting the association of a variable with
rupture in a multivariate model since the corresponding re-
gression coefficient quantifies the change of risk when all
other variables are kept constant. In contrast to the model
constructed from aneurysms at several locations by Xiang et
al. [7], size ratio was not retained in our final model.

Effects of hemodynamics

The probability of rupture increased with the mean WSS in the
parent vessel and with higher aneurysm peak velocity andmax-
imumWSS and OSI, as well as with lower minimumWSS and
mean OSI, suggesting that focalized elevations of WSS and
OSI surrounded by lower values may constitute hostile hemo-
dynamic environments that predispose aneurysms to rupture.
Lower normalizedWSS (WSSnorm) associated with rupture in
two previous studies of PCOM aneurysms [34, 36] and in one
study including several locations [7]. However, as a result of
the modeling fitting process, WSSnorm was not retained in our
final model. In the model of Xiang et al. [7], higher mean OSI
was associated with higher rupture probability, but in our mod-
el, mean OSI was included only in 50% of the nested cross-
validation samples and with a negative association. In contrast,
maximum OSI was retained in all models with a positive asso-
ciation, suggesting that this is an important parameter. In one
previous multivariate model of PCOM aneurysms based on
hemodynamics and morphology [33], the rupture probability
increased with the area under low shear (LSA) and inflow

angle, while another study found significant differences in
LSA between ruptured and unruptured PCOM aneurysms
[36]. In our study, inflow angle was not considered and LSA
was not retained in the final model.

Figure 5 illustrates the above-discussed finings with four
cases. The two unruptured aneurysms at the left have low pre-
dicted rupture probabilities (4.7 and 10.8%, respectively, based
on model 1). Both of them have an angio-architecture of the
lower-risk type 6, a more regular shape, which is also indicated
by a low NSI, and are exposed to lower and more regular flow
conditions characterized particularly by a lower maximum OSI
(see Table 3). In contrast, the two ruptured aneurysms at the
right have predicted probabilities of 86.4 and 97.7%, respec-
tively. They have a type 2 angio-architecture, which is associ-
ated with a higher rupture risk. Moreover, they are more com-
plex in shape and exposed to higher flow conditions.

Model evaluation

Before applying a prediction model in clinical practice, inter-
nal and external validations of the model are essential. In this
study, models were internally validated using nested cross-
validation and a split-sample approach to mimic external val-
idation. The results from the cross-validation suggested that
the retention of variables for the fitted models is reasonably
stable with respect to small changes in the data.

The results of the split-sample approach showed that the
discrimination power of the models was reduced when applied
to the left-out data, especially for the mayo data. This suggests
that differences in the hospital populations may affect the per-
formance of the models when applied to a different population,
and that in particular, themayo populationmay be different from
the inova and sinai populations. In fact, the overall rupture prev-
alence (including all locations) of our inova and sinai datasets is
31%which is significantly different (p = 0.002, chi-squared test)
from 21% for the mayo dataset. When restricted to PCOM an-
eurysms, the rupture prevalence were 52% for inova, 51% for
sinai, and 41% for mayo. However, these differences were not
statistically significant, most likely due to the small sample size
of the mayo PCOM dataset. These differences may reflect the
different admission and referral practice patterns at different
hospitals. These findings indicate that it is important to include
data from different hospitals to create generic statistical models
of aneurysm rupture that are valid across populations.

Compared to a previously developed model by Xiang et al.
[7] as well as univariate models only using aneurysm size or
NSI, the model’s discrimination was remarkably higher (see
Fig. 6). This result indicates that applying the model could
have additional value over using only aneurysm size, NSI
for quantifying shape complexity, or the model reported in
[7] when deciding on treatment of an unruptured aneurysm.

Furthermore, when applying a recently developed model
for aneurysms at various locations [21] to the PCOM cohort
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here, the AUC was with 0.79 lower than the AUC of the final
model 1. This finding suggests that having a location-specific
model including information that is specific to this location,
like angio-architectures, could potentially improve rupture
risk assessment compared to a more general model.

In this regard, this study aimed at developing a statistical
model for discriminating rupture status in PCOM aneurysms.
Aneurysms of the anterior communicating artery (ACOM)
have a comparable prevalence and risk of rupture [5], indicat-
ing a potential for a similar study in those aneurysms. This
study focused on PCOM aneurysms motivated by our previ-
ous findings [8]. Furthermore, the different types of angio-
architectures are more clearly defined for these aneurysms.
Future work could include the development of a statistical
model for ACOM aneurysms as well.

Clinical considerations

The presented Bprobability models^ were developed and val-
idated using cross-sectional data. They thus discriminate

between ruptured and non-ruptured aneurysms at the time of
presentation to the hospital. In contrast, for the training of a
predictive model, longitudinal data would be necessary.
Nowadays, these data are, however, difficult to obtain and
always inherently biased since high-risk aneurysms get treated
so that follow-up data of these cases are not available.
Therefore, based on the implicit assumption that rupture-
prone aneurysms resemble aneurysms that have already rup-
tured, the presented model can be used as a Bsurrogate^ for a
predictive model. Aneurysms classified as Bunruptured^ or
Blow risk^ with our model should be observed during
follow-up to identify possible changes that could increase
the predicted rupture risk. To assess the performance of our
model in terms of rupture prediction, its validation in prospec-
tive longitudinal data is planned in the future.

Besides a thorough external evaluation of the presented
model, it is important to provide clinicians with means for
applying the model in a clinical setting. Therefore, a web-
based tool that allows clinicians the application of the
model to new cases will be developed. In addition to

Fig. 5 Illustration of cases with low (a, b) and high (c, d) predicted
probabilities of being ruptured based on model 1. Top panel: WSS
distribution at half of the cardiac cycle. Bottom panel: Blood flow

velocities at half of the cardiac cycle. The predicted probabilities and
selected aneurysm characteristics are shown in Table 3

Table 3 Characteristics of illustrated cases in Fig. 5

Case Prob. Angio-type NSI OSImax WSSves [dyne/cm2] Asize [cm] Patient age [years]

a 0.0473 6 0.1659 0.0317 12.5408 0.3559 57

b 0.1083 6 0.1795 0.2159 34.2509 1.0198 81

c 0.8636 2 0.2707 0.3497 77.2606 0.7472 31

d 0.9778 2 0.2737 0.3431 148.0400 0.6548 42

Prob probability of being ruptured based on model 1
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providing clinicians purely with the predicted rupture
probabilities for a new case, this interface will include
visualizations of the specified input parameters for facili-
tating their interpretation and to illustrate the computed
results. After a prior evaluation with clinicians, such a
tool could eventually enable the application of the pre-
sented model in a clinical setting.

To enable other groups the validation of the proposed mod-
el, the Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis (TRIPOD)
[37] was followed for this publication.

Besides addressing the Bstandard CFD assumptions,^
the current study could be enhanced in several ways.
Patient characteristics other than age and gender (e.g.,
hypertension, smoking, family history, etc.) were not
studied due to lack of data for some cases. No validation
with the split-sample approach was possible for the com-
plete model due to lack of patient information (age) in
the mayo data.

This study is based on data of aneurysms that were assessed
by 3D cerebral angiography. Consequently, aneurysms that
were only imaged by means of MR angiography or CT angi-
ography as well as undiagnosed aneurysms and aneurysms
with fatal ruptures are inherently excluded from our dataset,
resulting in a selection bias.

Futuremulti-center studies with larger andmore comprehen-
sive samples frommultiple hospitals and populations should be
conducted to evaluate and further improve the predictive
models, which in turn should be tested on longitudinal datasets.

Conclusions

Statistical models of PCOM aneurysm rupture based on aneu-
rysm hemodynamics, morphology, angio-architecture, and pa-
tient age can discriminate between ruptured and unruptured
PCOM aneurysms with an AUC of 84%. It is important to
include data from different hospitals to create such models of
aneurysm rupture that are valid across different hospital pop-
ulations. Future work will include the external validation of
the developed models.
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Comments

This manuscript investigates whether a geometry and flow-based risk
assessment could improve our ability to identify aneurysms at risk of
rupture from the currently available risk factor-based scoring and practice.
The major limitation of this study is the case-control type study design
comparing ruptured and unruptured aneurysms, which setting is prone to
bias because the geometry and flow conditions of an aneurysm that has
ruptured may have been very different before the rupture. In spite of this
limitation, the results of this study are highly interesting and contribute
significantly to our knowledge on risk factor for aneurysm rupture and
demonstrate that a detailed analysis of geometry and flow conditions may
help to identify those aneurysms in which aberrant flow conditions will
trigger pathological wall remodelling that eventually leads to rupture.
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