Campus alert status is orange: For the latest campus alert status, news and resources, visit

Search Close Search
Search Close Search
Page Menu


Microglia-derived neuroactive cytokines governing neural circuit excitatory-inhibitory balance

Philip A Feinberg  |  Schafer Lab  |  Autism Speaks Predoctoral Fellowship

Elaborate mechanisms exist to establish and maintain the appropriate balance of excitation and inhibition (E/I balance) in the brain. Defects in E/I balance are hypothesized to underlie many core clinical symptoms seen in ASD including repetitive behaviors and seizures. Concomitant with E/I imbalance are increased markers of inflammation in the periphery and brain. Central to this inflammation are microglia, a resident macrophage of the central nervous system. Whether microglial inflammatory state drives E/I imbalance in neuropsychiatric disease remains a critical open question. In this proposal, I will leverage my primary mentor’s (Schafer) expertise in using mouse models to study microglia function at synapses with my co- mentor’s (Frazier) expertise as a physician scientist studying neuroinflammatory processes in ASD patients to explore whether microglia-derived cytokine signaling modulates E/I balance. I will use a mouse model with altered inflammatory cytokine signaling to assess how microglial inflammatory cytokine production modulates neuronal excitability (aim1). Next, I will use human ASD functional imaging data and data from patient serum to identify pro-inflammatory cytokines that are dysregulated in ASD patients and assess how these ASD-specific cytokines affect E/I balance in our mouse models (aim2). To start, I already have one candidate TNF􏰀-alpha. The results from these experiments will help to identify novel targets for treating ASD with inflammatory modulation.