Search Close Search
Search Close Search
Page Menu

Student External Award for Research Training Details

Regulation of Immune Gene expression and inflammatory diseases by the Cellular nucleic acid binding protein (CNBP)

Yongzhi Chen |  Fitzgerald Lab  |  Charles A. King Trust Postdoctoral Research Fellowship

An inducible program of inflammatory gene expression is a hallmark of antimicrobial defenses. Germline-encoded receptors recognize microbial products and activate signaling pathways that lead to the expression of hundreds of inflammatory response genes. This proposal expands on these studies by defining a new regulator of immune gene expression; the CCHC-type zinc finger protein cytosolic nucleic acid binding protein (CNBP). We have generated mice lacking CNBP and found that CNBP-deficient macrophages fail to induce transcription of the IL-12/IL23 family. Cnbp resides in the cytosol of macrophages and translocates to the nucleus in response to multiple microbial ligands and pathogens. Cnbp regulates IL12 via c-Rel, an NFkB/Rel family member known to control IL12b gene transcription. c-Rel nuclear translocation and DNA binding activity require Cnbp. Furthermore, Cnbp itself a DNA binding protein bound the IL12b promoter. CNBP-deficient mice were more susceptible to acute toxoplasmosis associated with reduced production of IL12b, as well as a reduced Th1 cell IFNg response essential to control parasite replication.  Collectively, these findings identify Cnbp as a new signaling molecule downstream of multiple Pattern Recognition Receptors, that acts as a key regulator of IL12b gene transcription and Th1 immunity. This proposal will test the hypothesis that CNBP represents a novel signaling molecule that acts as a transcriptional coactivator to bind the genome and coordinate expression of IL12p40 to regulate IL12 and IL23 in innate cells and direct TH1/TH17 dependent adaptive immunity and inflammation. We will explore these hypotheses using the following specific aims: (1) defining detailed molecular mechanisms of CNBP-dependent control of the IL12/IL23 gene family; (2) defining the cell type specific contributions of CNBP in control of Th1 immunity to Toxoplasma gondii and TH17 responses to Candida Albicans; and (3) defining the role of CNBP in controlling Inflammatory Bowel Diseases using DSS colitis and related models.