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High-throughput RNA isoform sequencing 
using programmed cDNA concatenation
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Full-length RNA-sequencing methods using long-read technologies can 
capture complete transcript isoforms, but their throughput is limited. 
We introduce multiplexed arrays isoform sequencing (MAS-ISO-seq), a 
technique for programmably concatenating complementary DNAs (cDNAs) 
into molecules optimal for long-read sequencing, increasing the throughput 
>15-fold to nearly 40 million cDNA reads per run on the Sequel IIe sequencer. 
When applied to single-cell RNA sequencing of tumor-infiltrating T cells, 
MAS-ISO-seq demonstrated a 12- to 32-fold increase in the discovery of 
differentially spliced genes.

Although RNA sequencing has accelerated our understanding of biol-
ogy, accurate quantification and discovery of RNA isoforms remain 
a challenge1. Alternative splicing is a core regulatory process that 
modulates the coding sequence, translation efficiency, stability and 
localization of mRNAs through differential splicing (DS) of exons during 
transcript maturation. Beyond being an integral component of cellu-
lar/organismal development and homeostasis, alternative splicing is 
implicated in a wide range of pathologies with hallmark isoforms being 
linked to cardiovascular, neurological and immunological diseases2,3. 
Additionally, mutated and/or dysregulated splicing factors make up a 
major class of phenotypic alterations associated with tumor progres-
sion and therapeutic resistance4.

High-throughput full-length RNA isoform identification and 
quantification remain challenging for single-cell and bulk studies 
as the necessary read lengths (>5 kb) and depths (>2 × 107 reads) are 
not easily attainable by existing sequencing platforms. For example, 
short-read sequencing platforms (for example, Illumina) achieve more 

than sufficient throughput (>1 × 109 reads) but are hindered by limited 
read lengths (50–600 bp) that are inadequate to span the majority of 
human transcripts (~1.6 ± 1.1 kb; Supplementary Fig. 1). As a result, indi-
vidual short-reads often fail to span successive splice sites, impairing 
efforts to correctly identify alternative transcript isoforms5. A recently 
developed short-read sequencing approach, Smart-seq3, enhances 
isoform detection by enabling single-molecule reconstruction via 
integration of reads from products with the same 5′ unique molecular 
identifier (UMI)6. However, due to the 5′ coverage bias of Smart-seq3, 
most transcript molecules are only partially reconstructed, resulting 
in poor isoform identification and discovery. Conversely, the long-read 
platforms from Pacific Biosciences (PacBio) and Oxford Nanopore 
(ONT) enable the full-length RNA isoform sequencing needed for 
robust isoform identification and discovery but suffer from compara-
tively low read throughput at high costs, limiting the scope of their 
application. Early limitations in raw base calling accuracy on long-read 
platforms (error rates of 10–15%) have been mitigated by improvements 
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To demonstrate MAS-ISO-seq’s performance, we carried out a 
15-member cDNA ligation from two 5′ single-cell gene expression cDNA 
libraries (10× Genomics) of tumor-infiltrating CD8+ T cells. As expected, 
we observed a ~15-fold increase in cDNA library length after ligation 
(Supplementary Fig. 3). MAS-ISO-seq libraries underwent standard 
CCS library preparation and were sequenced on the PacBio Sequel IIe. 
Sequenced libraries exhibited corrected read length and circular pass 
count distributions more comparable to whole-genome CCS data than 
the standard isoform sequencing method, Iso-Seq, as expected due to 
longer concatenated library lengths (Supplementary Fig. 4).

The programmed sequential pattern of MAS-ISO-seq adapters 
provides landmarks for effective cDNA segmentation and constraints 
for detecting malformed or otherwise defective array structures. 
MAS-ISO-seq adapters also enable the utilization of CCS-uncorrected 
reads that are otherwise discarded using standard methods. To exploit 
these signals, we developed a composite profile hidden Markov model, 
Longbow, for the probabilistic annotation and optimal segmentation 
of each MAS-ISO-seq read via maximum a posteriori state path (Meth-
ods). Across both single-cell MAS-ISO-seq libraries, 99.01–99.15% of 
CCS-corrected reads and 54.27–60.72% of CCS-uncorrected reads 
were found to segment consistently. To maximize precision, segmen-
tation results inconsistent with our expected array structure (that is, 
off-subdiagonal elements of the matrices in Supplementary Fig. 5a,b) 
were filtered out (Supplementary Fig. 5c,d). A plurality of filtered reads 
(sample 1, 29.54%; sample 2, 35.61%) were found to contain fully formed 
15-element arrays. Arrays with fewer than 15 cDNAs were more preva-
lent in CCS-uncorrected reads than in CCS-corrected (Supplementary  
Figs. 6 and 7). Across both libraries, this process yielded 37–40 million 
cDNA reads for downstream analysis (a gain of 16.34–22.90× compared 
to the CCS-corrected read yield; Fig. 1b and Supplementary Fig. 8).

The segmented reads were then filtered again to remove reads 
that failed to conform to the library structure at the individual 
cDNA level (Longbow sift command; Methods). The vast major-
ity of sifted, segmented reads from these partial arrays still con-
tained consecutive adapter sequences, a poly(A) tail and had a high 

in pore-based nucleotide reading, circularized consensus sequenc-
ing (CCS, or HiFi) and consensus generation strategies for individual 
library molecules7–9. On the PacBio Sequel IIe platform, consensus 
base quality reaches the Phred-scale quality of Q30 at ~10 circular 
passes, with marginal quality improvement on additional passes. For 
the current Sequel IIe instrument and single molecule, real-time (SMRT) 
Cell 8M chemistry, the optimal library size for reaching ~10 circular 
passes is 15–20 kb. As transcript lengths typically range substantially 
shorter (200 bp–5 kb), CCS of individually circularized complementary  
DNA (cDNA) molecules using the standard Iso-Seq protocol (PacBio) 
yields an excessive number of circular passes (50–60) and ineffectively 
uses the available sequencing potential of the platform (Supplemen-
tary Fig. 2).

To maximize the sequencing throughput on the PacBio plat-
form, we developed a method for the programmable concatenation 
of DNA fragments into long composite sequence library molecules, 
multiplexed arrays sequencing (MAS-seq; Fig. 1a). When MAS-seq 
is used for sequencing transcript isoforms, we term the approach 
MAS-isoform-seq (MAS-ISO-seq). The protocol begins by depleting 
TSO (template switching oligo) priming artifacts via streptavidin/
biotin selection of molecules containing the oligo-dT adapter from 
the input cDNA library. The purified cDNA library is then split across 
parallel PCRs, which serve to both increase cDNA yield and append 
reaction-specific deoxy-uracil (dU) containing barcode adapters. 
Using dU digestion followed by barcode-directed ligation of cDNAs, 
MAS-ISO-seq generates long concatenated cDNA arrays assembled 
deterministically with a narrow length distribution that allows for both 
accurate consensus sequencing and more optimal capacity utiliza-
tion of the PacBio long-read platform. To drive accurate and specific 
hybridization, we designed 15 bp ligation barcode adapters with each 
having a Hamming distance of 11 from all other barcodes10. In combina-
tion with upstream depletion of TSO priming artifacts via streptavidin/
biotin selection, MAS-ISO-seq boosts the sequencing throughput to 
~40 million full-length transcripts per SMRT Cell 8M flow cell, a >15-fold 
increase over CCS-corrected read counts (Fig. 1b).
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Fig. 1 | MAS-ISO-seq workflow and experimental validation using synthetic 
RNA isoforms. a, Schematic representation of the MAS-ISO-seq intramolecular 
cDNA multiplexing workflow. b, Sankey diagram reporting MAS-ISO-seq run yield 
of sample 1 at various stages of processing. c, Observed ERCC concentrations 
as measured in MAS-ISO-seq and Smart-seq3 experiments versus reference 

concentrations (R2 > 0.95 for both). d, Log ratio of observed to reference 
concentrations of short and long SIRV isoforms in SIRV-Set 4 versus transcript 
length for Smart-seq3 and MAS-ISO-seq. e, Isoform identification confusion 
matrix for SIRV isoforms as measured by Smart-seq3 reconstructions and MAS-
ISO-seq observations.
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mapping quality to the genome (96.90%; Supplementary Figs. 6 and 7).  
After final filtering across both samples, we obtained ~21 M to 28 M 
quantification-ready CCS-corrected transcripts (~11- to 13-fold yield 
increase over the number of CCS-corrected reads) and ~6 M to 8 M 
quantification-ready CCS-uncorrected transcripts (an additional ~2- to 
5-fold increase) for a total 14- to 18-fold increase as compared to raw  
CCS-corrected reads.

To validate the ability of MAS-ISO-seq to faithfully identify RNA 
isoforms, we performed full-length RNA sequencing of the Lexogen 
SIRV-Set 4, a synthetic mixture of spike-in RNA variants (SIRVs) contain-
ing 69 RNA isoforms of varying lengths and equal molarity across seven 
‘genes’, 15 long (4–12 kb) SIRVs and 92 ERCC RNA standards with con-
centration spanning six orders of magnitude11. Smart-seq3 short-read 
sequencing of the SIRV-Set 4 library was performed in parallel to com-
pare short-read isoform reconstructions to our high-throughput 
long-read sequencing approach. Although quantification of ERCC 
standards was broadly similar overall between both protocols (Fig. 1c), 
long isoforms showed markedly reduced length bias in MAS-ISO-seq 
and Iso-Seq versus Smart-seq3 (Fig. 1d and Supplementary Fig. 9). 
Smart-seq3 isoform reconstructions exhibited substantial ambiguity in 
assigning reconstructed transcripts to a specific known isoform (~43% 
error rate; Fig. 1e). In contrast, MAS-ISO-seq allows direct identification 
of transcript isoforms without the need for in silico reconstruction, 

and hence leads to virtually unambiguous isoform assignment (~0.4% 
error rate; Fig. 1e).

To characterize the performance of MAS-ISO-seq for single-cell 
RNA sequencing, we performed 10× Genomics 5′ single-cell gene 
expression on tumor-infiltrating CD8+ T cells. Using the standard 
5′ single-cell gene expression protocol, we generated both stand-
ard short-read and MAS-ISO-seq long-read libraries from the same 
full-length cDNA library. To overcome challenges associated with the 
incompleteness of the available isoform annotations and cDNA trun-
cation artifacts, we developed a graph-based algorithm that assigns 
each read to an isoform equivalence class based on the junction-level 
relationship between the read, GENCODE reference annotations and 
de novo annotations discovered from all reads using StringTie2 (ref. 12; 
Methods; Supplementary Figs. 10 and 11). After applying conventional 
QC filtering steps and separating primary tumor cells (Methods), we 
obtained 5,270 CD8+ T cells containing a median of 4,041 UMIs/cell 
(short-read data) and 1,701 UMIs/cell (long-read data). Sequencing 
saturation was higher for the short-read run, 1.98 reads/UMI (short) 
versus 1.22 reads/UMI (long). We leveraged the presence of a small 
number of primary tumor cells in our sample and the mutually exclu-
sive expression of several immune and tumor genes to estimate the 
accuracy of MAS-ISO-seq cell barcode (CBC) assignments to be in 
the range of 99.0–99.7% (Methods; Supplementary Fig. 12). Despite 
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large discrepancies in sequencing depth between short- and long-read 
approaches and quantification methodologies (Methods), cell cluster-
ing and gene expression were highly concordant (Fig. 2a, adjusted Rand 
index (ARI) = 0.79, Fig. 2b, concordant gene count saturation curves, 
and Supplementary Fig. 13, R2 = 0.91). A common set of T-cell transcrip-
tional states, ranging from stem cell-like to terminally differentiated, 
were observed in both datasets.

Leveraging the distinct splicing patterns of CD45 (PTPRC) over the 
course of T-cell differentiation, we performed orthogonal validations 
of CD45 isoform expression at the protein level using CITE-seq and 
compared them to the mRNA levels measured with MAS-ISO-seq13. 
CD45 isoform expression between these two modalities was highly con-
cordant (Fig. 2c). Notably, mRNA measurements were more granular 
in their ability to resolve the multiple encoded CD45 isoforms present 
(RO, RA, RAB, RB and RBC) as compared to the antibody-based CITE-seq 
approach. This is due to the single-epitope specificity of antibodies 
that limits or does not enable discrimination between closely related 
isoforms14. For example, the CD45 RA antibody cannot distinguish 
between CD45 RA and RAB. Pseudotime analysis revealed a continuum 
of T-cell states leading from stem cell-like to activated to terminally 
differentiated. Canonical CD45 isoform expression and its associated 
splicing factor, hnRNPLL13, were tracked clearly along this differentia-
tion trajectory (Fig. 2d–f).

To quantify the impact of the sequencing depth gained by 
MAS-ISO-seq on cell typing and identification of differentially spliced 
(DS) genes, we performed an in silico downsampling analysis from a 
single MAS-ISO-seq run. We processed each dataset identically using 
the same pipeline and computed the ARI between the cell clustering 
of the subsampled long-read dataset and the full short-read dataset 
as a reference. We also determined the number of DS genes across the 
T-cell subtypes for each downsampling run (Methods). Compared to 
the read-depth expected from an Iso-Seq run (2–4 M HiFi reads pass-
ing filters), the throughput gain afforded by MAS-ISO-seq translates 
to a 34–47% increase and saturation of ARI between short-read and 
long-read single-cell clustering and a 12–32-fold gain in identifying 
DS genes (multiple hypothesis testing correction with false discov-
ery rate (FDR) < 0.05; Fig. 2g and cluster-resolved results given in  
Supplementary Fig. 14). Notably, a plurality of the DS genes was distinct 
from the set of differentially expressed (DE) genes (Supplementary 
Fig. 15).

In this work, we detailed and validated MAS-ISO-seq, a program-
mable cDNA concatemerization method that boosts the throughput 
of the PacBio long-read sequencing platform >15-fold to ~40 million 
deconcatenated reads per run. Using synthetic RNA isoforms as a 
ground truth library, we demonstrate that MAS-ISO-seq is far superior 
in confidently identifying RNA isoforms as compared to short-read 
approaches. Furthermore, we leveraged MAS-ISO-seq to perform 
single-cell RNA isoform sequencing on human tumor-infiltrating CD8+ 
T cells. We validated our ability to accurately identify isoforms by 
resolving canonical CD45 isoform expression differences across the 
range of observed cell states and orthogonal protein isoform-based 
measurements. Through downsampling analyses, we demonstrate 
that the additional throughput afforded by MAS-ISO-seq is sufficient 
to enable robust cell clustering into known T-cell differentiation states 
and substantially boosts the identification of DS genes. As adequate 
sequencing depth is, in part, a function of cellular RNA content, 
deeper sequencing may be necessary to provide adequate power for 
downstream single-cell analyses. A related approach, HIT-scISOseq, 
leverages palindromic adapter sequences to drive ligation of an inde-
terminate number of cDNAs, enabling ~10 million transcript reads15. 
While producing a fourfold lower yield as compared to MAS-ISO-seq, 
HIT-scISOseq additionally lacks the sequential array structure that 
MAS-ISO-seq exploits for accurate segmentation and identification 
of malformed arrays. Other concatenation approaches for targeted 
DNA sequencing use Gibson Assembly or Golden Gate Assembly for 

array formation. These methods also demonstrate considerably lower 
throughput and lack the error robustness of MAS-ISO-seq arrays16,17.

Challenges impacting the RNA isoform sequencing field as a whole 
include cDNA synthesis artifacts, incomplete transcriptome refer-
ences and transcriptome assembly software with limited performance. 
We believe that the read throughput afforded by approaches such as 
MAS-ISO-seq will lower barriers to data generation and catalyze pro-
gress to surmount these challenges. The compatibility of MAS-ISO-seq 
with archived single-cell cDNA libraries generated in cell atlasing stud-
ies poises the field to immediately advance isoform discovery and 
generate cell type-specific isoform-resolved transcriptome references 
at scale. Furthermore, MAS-ISO-seq will augment a broad range of 
efforts, including gene fusion identification, proteogenomic resolu-
tion, neoantigen discovery and TCR/BCR repertoire sequencing. To 
date, PacBio and ONT have driven transformative advancements in 
long-read sequencing, releasing new platforms and chemistries with 
increased base-level accuracy and throughput (for example, Revio 
and Q20+). Given the modular and scalable nature of MAS-ISO-seq, 
the workflow is positioned to co-evolve with compatible long-read 
sequencing platforms, enabling even greater throughput as read 
lengths, yield and per-base accuracy increase.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
Patients consent and sample collection
Patients’ CD8+ T cells analyzed in this study were collected under the 
Dana–Farber/Harvard Cancer Center Institutional Review Board (pro-
tocol 11-181) and provided written informed consent before tissue 
collection.

Single-cell and SIRV cDNA library preparation
Sample dissociation and fluorescence-activated cell sorting 
(FACS) of CD3±CD8± T cells. Using the human tumor dissociation 
kit (Miltenyi Biotec, 130-095-929), freshly isolated tumors were 
digested to obtain a single-cell suspension. Tissue was placed into a 
1.5 ml Eppendorf tube containing 420 µl of Dulbecco’s modified Eagle 
medium (DMEM) with 10% fetal calf serum (FCS), 42 µl of enzyme 
H, 21 µl of enzyme R and 5 µl enzyme A (provided with the kit). The 
tissue was minced using surgical scissors, and an additional 512 µl 
of DMEM with 10% FCS was added to the tube (total volume of 1 ml). 
Next, the tissue was incubated for 15 min at 37 °C, 350 r.p.m. in a ther-
momixer (Eppendorf; F1.5). After incubation, the tissue was further 
digested using a 1 ml syringe plunger over a 50 µm filter (Sysmex, 
04-004-2327), making sure to wash the filter with media. Using ACK 
(ammonium-chloride-potassium) buffer (Gibco, A1049201), RBC 
lysis was performed and the sample was finally resuspended in DMEM 
with 10% FCS to count and determine the viability of the cells using a 
manual hemocytometer (Bright-line, 1492). Cells were then washed 
twice with cold 1× PBS, and the cells were incubated with live/dead 
Zombie Violet Dye (Biolegend, 423114) for 15 min at room temperature 
as suggested by the manufacturer. The cells were then washed and 
resuspended with 1× PBS containing 1.5% FCS for cell-surface labeling 
using a standard protocol for 30 min at 4 °C. An antibody panel was 
used to identify and sort the CD3+CD8+ T-cell population—human Tru-
eStain FcX (Biolegend, 422302), PE (phycoerythrin) antihuman CD45 
(Biolegend, 304008), FITC (fluorescein isothiocyanate) antihuman 
CD3 (Biolegend, 317306), APC (allophycocyanin)/Cyanine7 antihuman 
CD235a (Biolegend, 349116) and APC antihuman CD8a (Biolegend, 
300912). Sorting of single live CD3+CD8+ T cells (gating on Zombielow, 
hCD235a−, hCD45+, hCD3+, hCD8+) was performed using a Sony MA900 
cell sorter. Cells were sorted into a 15 ml tube containing DMEM with 
10% FCS. After sorting, tubes with sorted cells were vortexed briefly, 
spun down at 1500 r.p.m., 4 °C for 5 min, resuspended and counted 
for yield (Supplementary Fig. 16).

TotalSeq-C staining and single-cell RNA-sequencing procedure. 
Sorted CD3+CD8+ T cells were washed and resuspended with staining 
buffer (1× PBS + FCS 2.5% + 2 mM EDTA). Next, TruStain FcX (FC blocker; 
Biolegend, 422301) was added and the sample was incubated for 10 min 
at 4 °C. After incubation with FcX blocker, the cells were washed with 
staining buffer once and spun down at 1,500 r.p.m., 4 °C for 5 min. 
The cells were then incubated for 20 min at 4 °C with the following 
TotalSeq-C antibody mix: TotalSeq-C0048 antihuman CD45 antibody 
(Biolegend, 368545), TotalSeq-C0103 antimouse/antihuman CD45R/
B220 (Biolegend, 103273), TotalSeq-C0087 antihuman CD45RO (Bio-
legend, 304259) and TotalSeq-C0063 antihuman CD45 RA (Biolegend, 
304163). Before adding the surface antibody mix, equal volumes of 
each antibody were combined and the mix was spun at 14,000 r.p.m. for 
5 min to remove aggregates. After staining, the cells were washed twice 
with staining buffer, and a final wash was completed in DMEM with 10% 
FCS before counting. Single-cell RNA libraries were generated using 
the 10× Genomics Chromium Single Cell V(D)J Reagent Kit using 5′ v1 
chemistry with Feature Barcode technology for Cell-Surface Protein 
(10× Genomics, 1000080). After each step, cDNA generation, gene 
expression libraries and cell-surface protein libraries samples quality 
was assessed using the Qubit dsDNA high-sensitivity kit (Invitrogen, 
Q32854) and the high-sensitivity BioA DNA kit (Agilent, 5067-4626). 
Samples that passed quality control were sequenced on a NextSeq 

500 sequencer (Illumina), using pair-end reads, with 26 reads for read 
1 and 55 reads for read 2.

Multiplexed array assembly of cDNA libraries. cDNA libraries were 
amplified using the following reaction conditions: 34 µl of H2O, 25 µl 
of Kapa HiFi Uracil+ ReadyMix (2×; Roche, 7959079001), 5 µl of primer 
AAO272 (10 µM, Integrated DNA Technologies (IDT)), 5 µl of primer 
AAO273 (10 µM, IDT) and 6 µl 10 × 5′ cDNA library (~3 ng µl−1), and the 
following cycling conditions: 98 °C for 3 min, followed by 5 cycles of 
98 °C for 20 s, 65 °C for 30 s and 72 °C for 8 min, followed by a final 
72 °C extension for 10 min. Amplified libraries were purified using  
0.7× SPRIselect (Beckman Coulter B23318) cleanup and quantified 
using Qubit (Thermo Fisher Scientific, Q32851). Libraries were further 
purified using 10 µl (100 µg) Dynabeads kilobaseBINDER (Thermo 
Fisher Scientific, 60101) with final bead reconstitution in 40 µl TE (tris &  
EDTA) buffer (Thermo Fisher Scientific, AM9849) after binding/wash-
ing. After streptavidin purification, 2 µl of USER (Uracil-Specific Exci-
sion Reagent) enzyme (M5505S) was added and incubated at 37 °C for 
2 h to uncouple the bound cDNAs from the beads. Following USER diges-
tion, the reaction was placed on a magnet for 5 min, separating the beads 
and supernatant containing the cDNAs. The cDNA fraction was moved 
to a fresh tube and purified using 0.7× SPRIselect (Beckman Coulter, 
B23318) cleanup. After cDNA purification, the following PCR master mix 
was assembled: 580 µl of H2O, 750 µl of Kapa HiFi Uracil+ ReadyMix (2×; 
Roche, 7959079001) and 20 µl 10 × 5′ cDNA library (~6 ng µl−1). In total, 
90 µl of the master mix was distributed in 15 PCR tubes, each containing 
10 µl of 5 µM MAS-ISO-seq primer pair mix (Supplementary Table 1).  
The 15 reactions were then thermocycled with the following cycling 
conditions: 98 °C for 3 min, followed by 8 cycles of 98 °C for 20 s, 65 °C 
for 30 s and 72 °C for 8 min, followed by a final 72 °C extension for 
10 min (optimal cycling number was identified using scaled-down 
qPCR reaction). Reactions were then pooled in a 5 ml tube and purified 
using a 0.7× SPRIselect (Beckman Coulter, B23318) cleanup and eluted 
in 450 µl of TE. In a subsequent reaction, 15 µl of USER Enzyme (M5505S) 
was added to 435 µl of the pooled product and set to incubate at 37 °C 
for 2 h. Following USER digestion, 15 µl HiFi Taq DNA Ligase (M0647S) 
and 51 µl of HiFi Taq DNA Ligase buffer were added to the reaction and 
incubated in a thermocycler at 42 °C for 2 h. Following ligation, the 
reaction was purified using a 0.7× AMPure PB Bead (PacBio, 100-265-
90) cleanup and eluted in 180 µl of H2O. Multiplexed array libraries 
were quantified using Qubit (Thermo Fisher Scientific, Q32851) and 
Genomic DNA ScreenTape (Agilent, 5067-5365).

SIRV-Set 4 cDNA generation. SIRV-Set 4 (Lexogen, 141.01) was thawed 
and aliquoted 1 µl into each of the nine PCR tubes on ice. Following 
primary aliquoting, 2 µl of Tris–EDTA (pH 7.0) was added to each tube 
and mixed. SIRV stocks were then frozen at −80 °C. For first strand syn-
thesis, the following primary master mix was set up: 15.5 µl of H2O, 3.2 µl 
of polyethylene glycol 8,000 50% (wt/vol; VWR, 25322-68-3), 0.24 µl Tri-
ton X-100 (10%) solution (Thermo Fisher Scientific, 9002-93-1), 0.32 µl 
SUPERase·In RNase Inhibitor (Thermo Fisher Scientific, AM2696), 1.6 µl 
of dNTP (deoxynucleotide triphosphates) mix (10 mM; NEB, N0447S), 
0.16 µl OligodT primer (100 µM; IDT; SS3_OligodTVN for Smart-seq3 
and MAS_OligodTVN for Iso-seq and MAS-ISO-seq) and 3 µl of SIRV-Set 4 
aliquot. Additionally, the following RT master mix was assembled: 1.2 µl 
of H2O, 0.8 µl of Tris–HCl (pH 8.5; 1 M), 0.96 µl of NaCl (1 M), 0.8 µl of 
MgCl2 (100 mM), 0.32 µl of GTP (guanosine triphosphate) (100 mM), 
2.56 µl of DTT (dithiothreitol) (100 mM), 0.4 µl of SUPERase•In RNase 
Inhibitor (Thermo Fisher Scientific, AM2696), 0.64 µl of TSO 100 µM 
(IDT; SS3_OligodTVN for Smart-seq3 and MAS_OligodTVN for Iso-seq 
and MAS-ISO-seq) and 0.32 µl of Maxima H-minus RT enzyme 200 U µl−1 
(Thermo Fisher Scientific, EP0751). Both primary and RT master mixes 
were added to the thermocycler with the following conditions: 42 °C 
for 90 min, followed by 10 cycles of 50 °C for 2 min and 42 °C for 2 min, 
followed by a final 85 °C for 5 min.
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Smart-seq3 of SIRV-Set 4. To amplify the cDNA, the cDNA generation 
reaction was added straight into the following PCR mix: 26.5 µl of H2O, 
16 µl of Kapa HiFi HotStart buffer (5×), 2.4 µl of dNTP mix 10 mM (NEB, 
N0447S), 0.4 µl of MgCl2 (100 mM), 0.4 µl of fwd_primer 100 µM (IDT), 
0.8 µl of rev_primer 10 µM (IDT) and 1.6 µl of Kapa HiFi DNA polymerase 
(KK2103). The reaction was amplified using the following conditions: 
98 °C for 3 min, followed by 13 cycles of 98 °C for 20 s, 65 °C for 30 s 
and 72 °C for 8 min, followed by a final 72 °C extension for 10 min. 
Amplified cDNA libraries were purified using 0.7× SPRIselect (Beckman 
Coulter, B23318) cleanup and quantified using Qubit (Thermo Fisher 
Scientific, Q32851). Libraries were normalized to 0.1 ng µl−1 and tag-
mented using the following reaction conditions: 7.56 µl of H2O, 9 µl of 
tagmentation buffer 4× (Tris–HCl pH 7.5 (40 mM), MgCl2 (20 mM) and 
DMF (N,N-dimethylmethanamide) (20%)), 1.44 µl amplicon tagmenta-
tion mix (Illumina, FC-131-1024) and 4 µl of normalized cDNA libraries. 
Tagmentation reaction was mixed, spun down and then added to a 
thermocycler at 55 °C for 10 min. After tagmentation, 2 µl of 2% SDS 
(sodium lauryl sulfate) was immediately added and incubated for 5 min 
to halt the reaction. To the tagmented cDNA reactions, 6 µl of Nextera 
primer pair mixes (0.5 µM) were added. Following the addition of prim-
ers, the following PCR was assembled: 25.38 µl of H2O, 25.2 µl of Phusion 
buffer 5× (Thermo Fisher Scientific, F530L), 2.7 µl of dNTP mix 10 mM 
(NEB, N0447S), 0.72 µl of Phusion high-fidelity DNA polymerase 2 U µl−1 
and added to the thermocycler with the following conditions: 72 °C for 
3 min, 98 °C for 3 min, followed by 12 cycles of 98 °C for 10 s, 55 °C for 
30 s and 72 °C for 30 s, followed by a final 72 °C extension for 5 min. 
Amplified final libraries were purified using 0.7× SPRIselect (Beckman 
Coulter, B23318) cleanup and quantified using Qubit (Thermo Fisher 
Scientific, Q32851) and Agilent high-sensitivity DNA kit for BioAnalyzer 
(Agilent, 5067-4626). Libraries were sequenced on an Illumina NovaSeq 
6000, using paired-end 150 read lengths.

Smart-seq3 short-read processing workflow
Aligning and stitching UMI-containing reads for SIRV isoform 
reconstruction. We process Smart-seq3 SIRV Illumina paired-end reads 
closely following the procedure outlined in ref. 6. We processed raw 
nondemultiplexed FASTQ files using zUMIs v2.9.4g and STAR v2.5.4b to 
generate expression profiles for both the 5′ UMI-containing and inter-
nal reads. To extract and identify the UMI-containing reads in zUMIs, 
we specified find_pattern: ATTGCGCAATG for the 5′ read together with 
base_definition: cDNA (23–150), UMI (12–19) in the configuration YAML 
file and collapsed UMIs within a Hamming distance of 1. In total, we 
obtained 3.1 × 108 UMI-containing and 5.6 × 107 internal reads. Next, we 
proceeded to stitch UMI-containing reads together using stitcher.py18 
starting from the <prefix>.filtered.Aligned.GeneTagged.UBcorrected.
sorted.bam output from zUMIs. To avoid UMI collision, we downsam-
pled the aligned reads down to the 20% level before read stitching. We 
inferred the transcript compatibility set for each 5′ UMI-containing 
read from the CT tag in the produced BAM file. The most abundant 
transcript compatibility set was SIRV201, SIRV202 and SIRV205, which 
contained 7,161 unique UMIs, which is still substantially below the UMI 
space size 48 = 65,536, justifying our chosen read downsampling level 
(Supplementary Fig. 17). In total, stitcher.py reconstructed 1.35 × 106 
molecules. The median and interquartile range for reads/molecules 
were 8 and 24, respectively (Supplementary Fig. 18). Finally, we gener-
ated the transcript identification confusion matrix by iterating over all 
stitched 5′ reads, assuming a flat prior for both source and target tran-
scripts, and accordingly dividing the assignment probability weight 
equally to all compatible source and target transcripts.

Quantification of SIRV isoforms. Following the recommendation 
discussed in ref. 6, we do not use UMIs to quantify isoform abundances. 
Instead, we used both 5′ UMI-containing and internal reads for quanti-
fication. To this end, we ran salmon v1.5.1 in quantification mode with 
additional arguments ‘--minAssignedFrags 1 -l IU’ on the previously 

obtained <prefix>.filtered.tagged.Aligned.toTranscriptome.out.bam 
transcriptome alignments from zUMIs without any downsampling. We 
read the transcript per million (TPM)-normalized abundances from the 
salmon_quant/quant.sf output table.

MAS-ISO-seq processing workflow
Error correction. Error correction was performed on-board the PacBio 
Sequel IIe with the vendor’s ccs software v5.0.0 (ref. 7) and settings 
‘--all --subread-fallback --num-threads 232 --streamed <movie_name>.
consensusreadset.xml --bam <movie_name>.reads.bam’. With these 
settings, all reads from the instrument (including those failing CCS 
correction) are presented in a single BAM19 file for downstream analysis. 
Each read is affixed with an auxiliary BAM tag ‘rq’ indicating overall 
read quality ranging from 0 < rq < 0.99 for CCS-corrected reads with 
predicted accuracy <Q20, rq ≥ 0.99 for CCS-corrected reads with pre-
dicted accuracy ≥Q20, and rq = −1 for CCS-uncorrected reads20.

Annotation/MAS-ISO-seq array filtration/segmentation/demul-
tiplexing. We developed a composite hidden Markov model toolkit 
(‘Longbow’) to enable the per-read labeling of all subsequences of 
interest (annotation), allowing for insertions, deletions and mis-
matches in both low- and high-error rate data. This toolkit is based on 
the open-source hidden Markov model library, pomegranate21. Our 
hidden Markov model formulation considers a MAS-ISO-seq read to 
be a mosaic of imperfect (but complete) copies of the various known 
adapter sequences among which the unknown cDNA sequences of 
interest are present. Given a predefined array and cDNA structure, we 
combined several instances of the following two probabilistic models 
for pairwise sequence alignment: the Needleman–Wunsch and random 
alignment models22. Needleman–Wunsch model sections support 
annotation of sequences known a priori (for example, MAS-ISO-seq 
adapters; 10× Genomics single-cell 5′ and 3′ adapters). Two instances 
of the Needleman–Wunsch models were modified to account for 
expected sequence length (using duration modeling22) and used to 
model poly-A tails and sequences of known length but unknown con-
tent (that is, CBCs and UMIs), respectively. Random alignment model 
sections support annotation of unknown interstitial sequences (that 
is, cDNA sequences and unexpected nucleotide sequences resulting 
from sequencing or library construction errors/artifacts). All submodel 
termini are bi-directionally connected to a secondary random model, 
which may transition to any other Needleman–Wunsch model. This 
construction permits the hidden Markov model annotation to skip 
adapters erroneously absent from a read due to errors in array or cDNA 
synthesis for downstream filtering or examination.

The state transition diagram and default values for transmission 
and emission probabilities (used for all MAS-ISO-seq processing per-
formed in this work) are provided in Supplementary Fig. 19. These 
defaults can optionally be refined using Longbow’s train command, 
which will estimate the parameters of the model using Baum–Welch 
learning.

Data processing proceeds as follows: Longbow annotations are 
generated for both the forward- and reverse-complement orienta-
tions, retaining the result from the model with higher log-likelihood. 
Given the design expectation that MAS-ISO-seq adapters should be 
found in sequence along the length of the read, we verify that each read 
conforms to this expectation and filter out (via Longbow filter) any 
read with mis-ordered MAS-ISO-seq adapters. We then segment (via 
Longbow segment) each read between MAS-ISO-seq adapters and the 
10× Genomics single-cell 5′ adapter. Finally, we filter (via Longbow sift) 
individual segmented reads by whether they conform to the structure 
of the expected library preparation (that is, the cDNA library itself). 
Longbow sift enforces that all expected regions in a segmented read 
are present (that is, a 10× Genomics single-cell 5′ adapter, a CBC, a 
UMI, the switch oligo leader sequence (‘SLS’), cDNA, a poly(A) tail and 
a 10× Genomics single-cell 3′ adapter). We apply this model to each 
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segmented read and retain those that match this model (Longbow’s 
sift command; Supplementary Fig. 19).

For multiplexed libraries (for example, libraries with different 
array configurations and run on the same flow cell), the demultiplexing 
workflow proceeds similarly to the procedure described above with one 
notable change—annotations are generated for both the forward and 
reverse-complement read orientations and over each user-specified 
array design. The annotations from the read orientation and array 
design that maximize the overall log-likelihood are propagated to 
subsequent steps.

SIRV isoform alignment. To assign SIRV isoform to MAS-ISO-seq reads, 
we took reads (both CCS-corrected and CCS-uncorrected) that had 
been filtered, annotated and segmented by Longbow and annotated 
their UMIs. We then removed the adapter sequences and poly-A tails 
from these reads. The resulting reads were aligned to the SIRV-Set 4 
transcriptome using minimap2 v2.17-r941 (ref. 23) with the HiFi read 
preset (minimap2 -ayYL --MD --eqx -x asm20).

SIRV confusion matrix construction. To generate the SIRV confusion 
matrix, we first followed the steps for SIRV isoform alignment. We then 
generated the transcript identification confusion matrix by iterating 
over all read alignments, assuming a flat prior for both source and tar-
get transcripts, and accordingly dividing the assignment probability 
weight equally to all compatible source and target transcripts.

Quantification of SIRV isoforms. To quantify SIRV isoforms from 
MAS-ISO-seq data, we first followed the steps for SIRV isoform align-
ment. We then took the primary alignments and removed any in which 
we could not detect a UMI as a quality control measure. Following the 
workflow discussed in ref. 6, we do not use UMIs to quantify isoform 
abundances, and instead, we use salmon v1.5.1 in the long-read quantifi-
cation mode with arguments ‘--minAssignedFrags 1 --dumpEqWeights -l 
U --ont’. The motivation for this choice is twofold, which are as follows: 
(1) here our goal is to compare MAS-ISO-seq SIRV quantification with 
the matching Smart-seq3 short-read protocol (Fig. 1c,d). The authors 
of Smart-seq3 recommend using salmon for quantification, utilizing 
both 5′ UMI-containing and internal reads. Indeed we found that salmon 
quantification, compared to UMI-based quantification of stitched 5′ 
reads, substantially improved Smart-seq3 results. This is likely associ-
ated with the utilization of reliable sequencing bias models in salmon 
and the usage of internal reads; (2) the Smart-seq3 protocol uses a UMI 
length of 8 bp, which is long enough to avoid collisions when reads are 
stratified by CBCs in single-cell libraries. Our SIRV library, however, 
is too complex to allow avoiding UMI collision for several abundant 
ERCC transcripts, diminishing the utility of UMIs for quantifying the 
SIRV-Set 4 data.

CBC and UMI annotation. CBC (16 bp) and UMI (10 bp) sequence 
boundaries are approximately determined during read annotation 
with Longbow in accordance with the MAS-ISO-seq array design (Sup-
plementary Fig. 19e). To ensure accurate boundary annotation for 
CBC error correction and UMI-based deduplication, additional post-
processing considerations were applied as follows: first, putative CBC 
sequences were error-corrected against a list of expected barcodes 
(described below). Next, we aligned the error-corrected CBC to either 
the 80 bp (in the case of CCS-corrected reads) or 120 bp (in the case of 
CCS-uncorrected reads) on either end of each read using an acceler-
ated Smith–Waterman algorithm, SSW (v1.2.4)24, to determine the 
5′ boundary between the CBC and UMI. We then aligned the 13 bp 
sequence between the UMI and the cDNA, the SLS (TTTCTTATATGGG), 
to the 46 bp (2 × (UMI length + SLS length)) beyond the end of the CBC 
alignment read using SSW. The UMI was then identified as the sequence 
between the end of the CBC and the start of the SLS, and each read 
was tagged accordingly. Note that the length of the resulting UMI 

sequences can deviate from the expected 10 bp due to indel sequencing 
errors, errors in oligo synthesis or a missing SLS. To handle the latter, 
we filtered out reads with SLS Smith–Waterman alignment scores 
below 10 and UMI lengths deviating from 10 bp by more than 3 bp for 
CCS-corrected reads and 4 bp for CCS-uncorrected reads.

In the case of SIRV data, no CBC was present in the library and, 
therefore, it was not annotated. The SIRV UMIs were similarly identified 
leveraging the structure of the array design. We first annotated each 
SIRV read with Longbow and then counted bases from the end of the 
forward adapter to annotate each read with the UMI.

CBC error correction. Correcting for potential CBC errors is a key step 
in single-cell data analysis, which we performed as follows. We first 
annotated each long read with a raw CBC as described earlier. We then 
padded the sequence of this raw CBC to include the adjacent 3 bp on 
either end. Next, we used a python implementation25 of the SymSpell26 
symmetric delete spelling correction algorithm to correct all padded 
long read CBC sequences to a CBC whitelist identified from short-read 
data (sample 1, ~695,000 entries; sample 2, ~645,000 entries). We did 
so by sliding a 16 bp window across the padded CBC sequences and 
performing a lookup in the 10× CBC whitelist within a Levenshtein dis-
tance threshold of 2 for CCS-corrected reads and 3 for CCS-uncorrected 
reads for each such window. We then corrected the CBC to the 10× CBC 
sequence that had the lowest Levenshtein distance. In the event that no 
10× CBC could be found within that Levenshtein distance or if multiple 
different 10× CBCs were found with the same minimum Levenshtein 
distance, the long read CBC was not corrected and the containing read 
was removed from further processing. We found that 97.2% and 96.3% 
of CCS-corrected reads and 72.2% and 71.12% of CCS-uncorrected reads 
(for sample 1 and sample 2, respectively) could be unambiguously cor-
rected to a whitelisted CBC sequence. The lower CBC correction rate for 
CCS-uncorrected reads is expected given the conservative parameters 
deliberately chosen to minimize misassignment. We implemented 
this correction mechanism as the correct subcommand in Longbow.

Evaluating the accuracy of CBC identification and error correction. 
Assigning CBC to reads and correcting for potential sequencing or seg-
mentation errors is a multistage process involving several parameter 
choices, as described earlier. The overall ‘end-to-end’ accuracy of CBC 
assignment can be effectively evaluated using species-mixing experi-
ments27,28. Inspired by such experiments, we leveraged the presence 
of a small number of primary tumor cells in our sample (attributed 
to CD3±CD8+ FACS false positives) to evaluate the overall accuracy of 
MAS-ISO-seq CBC assignment as follows. First, we used short-read 
sequencing to identify high-purity tumor and immune CBCs. After 
removing doublets and potentially contaminated cells, we could iden-
tify 3,336 high-purity immune and 101 high-purity tumor CBCs, along 
with a set of genes exhibiting mutually exclusive expression patterns 
across immune and tumor cells. Our criterion for mutual exclusivity 
was TPM < 1 in tumor cells and TPM > 100 in immune cells, or vice 
versa. We could identify 121 immune-specific and 100 tumor-specific 
such genes. Our criterion for barcode purity was the sum total of total 
off-target UMIs to be ≤1. The median UMI per cell in our short-read data 
was ~4,000, so the on-target gene expression purity in our selected 
CBCs was >99.97%. Next, we studied the expression of the same genes 
in the same CBCs but in the MAS-ISO-seq data obtained from the same 
cDNA library. CBC misidentification, sequencing errors and inaccu-
rate barcode error correction lead to the random shuffling of reads 
between tumor and immune cells. Therefore, off-target counts of 
tumor genes in immune cells and vice versa can be used to estimate 
the rate of CBC misassignment. We note that this strategy is practically 
similar to the ‘capture–mark–recapture’ method for estimating wildlife 
population sizes, where ‘capturing’ and ‘marking’ steps are done using 
high-fidelity short-read data, followed by ‘recapturing’ in MAS-ISO-seq 
data. Supplementary Fig. 12 shows a scatter plot of total tumor gene 
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expression versus total immune gene expression in MAS-ISO-seq data 
for the predetermined set of high-purity barcodes using short-read 
data. Overall, we found 99.82% and 99.65% of reads assigned to tumor 
and immune cells to be on-target. These accuracy figures are slightly 
higher for CCS-corrected reads (99.86% and 99.80%, respectively) and 
only slightly lower for CCS-uncorrected reads (99.62% and 98.99%, 
respectively). Assuming that CBC errors occur at random with prob-
ability pe (per read) and independently of transcript identity, the odds 
of CBC misassignment can be straightforwardly estimated as follows:

pe
1 − pe

≈ RT→I∗
RT

Rtotal
RI∗

≈ RI→T∗
RI

Rtotal
RT∗

,

where RT→I∗ and RI→T∗ denote the total number of reads mapping to 
tumor and immune genes but misassigned to (a predetermined set of) 
immune and tumor CBCs, I* and T*, respectively; RT and RI denote the 
total number of reads in the library mapping to tumor and immune 
genes, respectively; RT∗ and RI∗ denote the total number of reads 
assigned to CBC sets T* and I*, respectively; Rtotal denotes the total num-
ber of sequenced reads. Using this formula, we obtain a CBC misassign-
ment rate of 0.3–1.0% (or correct CBC assignment rate of 99.0–99.7%) 
using either off-target tumor or immune genes as the error estimator.

UMI error correction. Reads were first partitioned into groups, such 
that reads with the same CBC and transcript equivalence class (TEC; 
described in the following section "Quantification of 10× Genomics 5′ 
CD8+ T-cell isoform expression") were grouped together. UMI correc-
tion was then performed separately on each resulting read group. We 
formulated UMI correction as a minimum vertex cover problem on a 
bipartite graph G = (T, S, E), where T and S are two disjoint and inde-
pendent sets of nodes and E is the set of edges, constructed as follows 
(Supplementary Fig. 20a). Let R be the set of reads in a given group, we 
defined the set of target nodes T to consist of all unique three-tuple 
(UMI, cDNA length and GC content) combinations generated from the 
reads in R and the set of source nodes S to consist of all the reads in R. We 
then added an edge (s, t) ∈ E between a source node s and a target node 
t if the following three conditions held: (1) the Levenshtein distance 
between the UMI of s and t was no greater than 2 for CCS-corrected 
reads and 3 for CCS-uncorrected reads, (2) the difference in cDNA 
length between s and t was no greater than 50 bp for CCS-corrected 
reads and 100 bp for CCS-uncorrected reads, and (3) the difference in 
GC content between s and t was no greater than 0.05 for CCS-corrected 
reads and 0.15 for CCS-uncorrected reads. The constraint parameters 
were selected to reflect the rate of indel sequencing errors and the 
empirical distributions of cDNA lengths and GC content of intragroup 
reads with identical UMIs. Under these constraints, an edge between a 
read and a target encoded the possibility that they represent the same 
molecule. Given the resulting graph, we applied an iterative greedy 
strategy to select the minimum subset of targets in T that cover all the 
read nodes in S. In particular, starting with the initial assignment, we 
iteratively chose the target in T with the highest degree (that is, the 
greatest number of supporting reads). The UMIs of the reads assigned 
to each selected target were then corrected to the UMI with the maxi-
mal support in the group (in the case of ties, priority was given to 
UMIs closer in length to the expected 10 bp). Post correction, reads 
with UMIs deviating from the expected length of 10 bp by more than 
3 bp were filtered out. Such reads were found to be primarily missing 
either the UMI itself or the subsequent 13 bp switch leader sequence 
(TTTCTTATATGGG). Note this filtering criterion further restricted the 
admissible UMI lengths as compared to the precorrection UMI-based 
filtering. Supplementary Fig. 20b shows the reduction in the number 
of UMIs before and after correction at each locus.

Quantification of 10× Genomics 5′ CD8+ T-cell isoform expres-
sion. To cross-annotate MAS-ISO-seq reads against a reference 

transcriptome (for example, GENCODE) and to obtain a single-cell 
isoform count matrix, we took reads (both CCS-corrected and 
CCS-uncorrected) that had been annotated, filtered and segmented by 
Longbow with CBCs and UMIs properly identified and error-corrected. 
We then extracted the cDNA bases from each read, thereby removing 
the library structure and poly-A sequences (implemented in long-
bow extract). These resulting extracted reads were aligned to a ver-
sion of the GRCh38 human reference genome with alternate contigs  
removed (GCA_000001405.15_GRCh38_no_alt_analysis_set.fa) using 
minimap2 v2.24-r1122 with the splicing preset (for CCS-corrected 
reads: minimap2 -ayYL --MD --eqx -x splice:hq, for CCS-uncorrected 
reads: minimap2 -ayYL --MD --eqx -x splice).

We then filtered these aligned reads, removing unmapped reads, 
reads with secondary or supplementary alignments, reads with map-
ping quality of 0, reads with length >15 kb and reads with clipping on 
either end of length >1 kb. We then processed the resulting reads with 
StringTie2 v2.2.1 (ref. 12) using GENCODE v37 (ref. 29) as baseline tran-
script annotations to create new transcriptome annotations specific to 
each of our samples (stringtie -Lv -G gencode.v37.primary_assembly.
annotation.gtf -o annotations.gtf -A gene_abund.out).

We developed a graph-based algorithm to accurately character-
ize and quantify isoform expression. First, we converted the aligned 
reads to genome interval annotations in gff format using spliced_
bam2gff v1.3 (https://github.com/nanoporetech/spliced_bam2gff; 
spliced_bam2gff -S -M aligned_reads.bam > aligned_reads.gff). We 
then performed comparisons between the GENCODE transcriptome 
annotations, the new transcriptome annotations and the aligned 
read annotations using gffcompare v0.12.6 (ref. 30). These compari-
sons were as follows (base versus query): new transcriptome versus 
GENCODE, GENCODE versus new transcriptome, aligned reads versus 
GENCODE, aligned reads versus new transcriptome (gffcompare -V -r 
base.gff -s base.fasta query_gff_name). These comparisons resulted 
in relationships between each query interval and the intervals in the 
given base file.

We assembled a directed multigraph using the output of these 
comparisons where each node is a transcript or read. The edges rep-
resent the relationships produced by gffcompare between each node 
(including the gffcompare classification codes), and edge direction 
is the query node to the base node. We first assigned gene names to 
the new transcriptome reads by traversing edges between the new 
transcript nodes and the GENCODE nodes to create a set of gene name/
classification code pairs. If this set of pairs contained a single pair with 
a classification code of ‘=ʼ, this was used as the gene name for the new 
transcript node. Otherwise, we assign a gene equivalence class to 
the new transcript node, which is composed of all accumulated gene 
name/classification code pairs (Algorithm 3 in Supplementary Note). 
Once these gene names/equivalence classes were identified, the new 
transcript nodes in the graph were updated with their new gene assign-
ments. To assign gene names to each read, we followed similar steps 
but traversed edges from read nodes to both new transcript nodes 
and GENCODE nodes to create the pair set. To assign transcripts to 
each read, we performed a traversal similar to the gene assignment 
process for each read, but created transcript ID/classification code 
pairs. This resulted in TECs for each read. These equivalence classes 
either contain no transcript assignment, one transcript assignment 
(with classification code), or multiple transcript assignments (with 
classification codes; see Algorithm 4 in Supplementary Note). For addi-
tional details on the graph construction method, see Supplementary 
Note and Supplementary Fig. 10.

Following the assignment of a TEC to each MAS-ISO-seq read, we 
created a count matrix by tallying for each TEC and CBC combination 
how many unique UMI occurrences there were. Using this equivalence 
class formulation enabled improved and automated processing of 
isoform expression data compared to direct alignment to either GEN-
CODE or StringTie2-derived transcriptomes (Supplementary Fig. 12).

http://www.nature.com/naturebiotechnology
https://github.com/nanoporetech/spliced_bam2gff


Nature Biotechnology

Brief Communication https://doi.org/10.1038/s41587-023-01815-7

Single-cell analysis
Short-read 10× Genomics 5′ gene expression and antibody cap-
ture preprocessing. We quantified the produced 5′ RNA capture and 
TotalSeq-C antibody capture libraries using Cell Ranger v3.1.0 count 
workflow. We imported the count data into AnnData format using 
scanpy v1.7.2 read_10x_h5 command. Our preliminary investigations 
indicated that the Cell Ranger automatic cell identification algorithm 
had used an excessively conservative cutoff, leading to the loss of 
30–50% viable nonempty droplets (primarily of stem-like memory 
T cells origin, a cell type that exhibits relatively lower transcriptional 
complexity). As a countermeasure, we loaded the raw count data from 
Cell Ranger count output raw_feature_bc_matrix.h5 and kept every 
droplet expressing >500 unique genes and >80% nonmitochondrial 
genes. We performed a preliminary round of clustering and differential 
gene expression analysis using scanpy standard workflow31. We iden-
tified and removed nonimmune cell clusters of likely primary tumor 
origin. We additionally identified and removed doublets using scrublet 
v0.2.3. The estimated doublet rate was 14%, which is the expected figure 
for loading ~10,000 cells. Finally, we log-transformed the antibody 
capture counts and treated them as cell-level annotations for the rest 
of the analysis.

Long-read single-cell MAS-ISO-seq isoform expression preproc-
essing. As a first step, we converted the TEC-level UMI count matrix 
produced by the MAS-ISO-seq workflow to an AnnData object. During 
this conversion, additional metadata was added to the counts. Many of 
the new transcripts and genes discovered by StringTie2 could be unam-
biguously assigned back to a GENCODE annotation. In particular, new 
genes were assigned to known genes in GENCODE v37 if the new genes 
had transcripts overlapping exactly one unique gene in GENCODE 
v37. In addition, an interval list containing T-cell receptor genes32 was 
cross-referenced, and transcripts found overlapping these intervals 
were accordingly marked. To harmonize the long- and short-read Ann-
Data objects for joint analyses, we only kept the mutual CBCs between 
the two datasets. We could identify 100% of T-CBCs identified from the 
short-read dataset in the MAS-ISO-seq long-read dataset, indicating 
the high fidelity of our CBC error correction algorithm.

Normalization, clustering and embedding. We imported the har-
monized short- and long-read AnnData objects to seurat v4.0.3 using 
SeuratData v0.2.1 and SeuratDisk v0.0.0.9015 helper packages33. We 
performed a negative binomial (NB) variance-stabilizing transfor-
mation (VST) on each count dataset separately using sctransform 
v0.3.2. We treated TEC counts similarly to gene counts, which is justi-
fied because TEC counts exhibit the same class of technical noise and 
statistical dropout as gene counts. Given the much larger number of 
TECs, we found it necessary to increase the number of TECs used for 
training the NB model from the default value of 2,000–10,000. We did 
not notice any substantial change in the downstream results by increas-
ing this figure any further. The Pearson residuals for all cells and genes 
were exported to AnnData. We performed clustering and embedding 
separately for short- and long-read datasets using the same workflow 
as follows. We selected the top 5,000 genes (or isoforms) sorted in the 
descending order of total Pearson residual as highly variable features 
(HVFs). The HVFs were z-scored independently to equalize the role of 
each gene (or isoform). We reduced the feature set down to 30 using 
PCA and calculated the k = 100 nearest neighbor graph for each cell in 
the PCA space based on the Euclidean distance. The resultant neighbor 
graph was used for obtaining a 2D embedding using UMAP and cluster-
ing using the Leiden algorithm with a resolution parameter set to 1.1. We 
performed differential gene expression (DE) analysis on the short-read 
dataset based on t-test, which is an appropriate statistical test for VST 
counts, as implemented in scanpy rank_genes_groups method. The 
DE genes were used for annotating the clusters shown in Fig. 2 using 
known T-cell subtype markers.

Diffusion pseudotime (DPT) analysis. We performed DPT analy-
sis closely following the scanpy hematopoiesis trajectory analysis 
workflow34 with one notable modification. We noticed that using 
scaled highly variable Pearson residuals in place of log-transformed 
counts resulted in cleaner force-directed graphs. The latter is expected 
given that Pearson residuals are more Gaussian-like compared to 
log-transformed counts and, thus, better suited to the assumptions 
of the DPT model. Accordingly, we substituted the standard preproc-
essing and normalization step with the sctransform workflow.

Annotating CD45 isoforms. The GENCODE v37 human transcriptome 
reference contains a rather extensive set of isoform annotations for 
CD45, including the RO, RABC, RB, RBC and RAB. These annotations, 
however, are frequently incomplete and miss a large portion of the cod-
ing sequences. For instance, out of the available annotations for PTPRC 
(CD45), only two (ENST00000348564: CD45RO and ENST00000442510: 
CD45RABC) extend all the way to the 3′ UTR (Supplementary Fig. 11a). 
Given the primarily short-reads origin of currently available transcrip-
tome annotations, we expect this caveat to prevail among most other 
genes, as also indicated by other authors35,36. Incompleteness and 
truncation of reference isoform annotations can turn into a source 
of quantification bias. For instance, when we attempted to directly 
align MAS-ISO-seq reads to the GENCODE v37 reference, we noticed 
that the aligner (minimap2) preferred the more complete and longer 
annotations, ENST00000348564 (CD45RO) and ENST00000442510 
(CDRABC), as the primary alignment target for the vast majority of CD45 
reads, irrespective of the differential inclusion or exclusion of shorter 
but biologically relevant exons such as the A, B and C. This strong align-
ment bias masks the alternative splicing pattern of CD45 expected in 
different T-cell subtypes (Supplementary Fig. 21). We found utility in 
refining GENCODE annotations using StringTie2, which resulted in the 
extension of several incomplete GENCODE annotations and improved 
the specificity of isoform assignments to different CD8+ T-cell subtypes 
(Supplementary Fig. 11b).

Our proposed transcript annotation and quantification workflow 
combines the higher fidelity of StringTie2 transcript definitions with 
the diversity, naming convention and community consensus of tran-
script definitions published by the GENCODE consortium. As detailed 
earlier, we align MAS-ISO-seq reads to the reference genome using the 
splice-aware minimap2 aligner, cross-reference every read against 
both GENCODE and StringTie2 transcript definitions and assign a TEC 
to each read. Truncated reads, for example, due to strand invasion or 
internal poly-A priming, are typically assigned to richer TECs involving 
many compatible annotations whereas full-length reads are assigned to 
narrower classes (Supplementary Fig. 10). Depending on the nature of 
the desired downstream analysis, TECs involving unambiguous splice 
junction patterns can be readily identified and ambiguous TECs can 
be neglected. We applied this strategy to quantify CD45 isoforms and 
achieved substantially higher isoform assignment specificity com-
pared to direct alignment to either GENCODE or StringTie2-derived 
annotations (Supplementary Fig. 11c). The results shown in Fig. 2b,c 
are based on this automated workflow.

Finally, the highest specificity in isoform assignment can be 
achieved by processing the genomic alignment of each read using a 
decision tree to bucket reads according to the presence/absence of 
manually specified landmark exons, for example, A, B and C in CD45 
(Supplementary Fig. 11d). This quantification strategy, while achieving 
slightly higher specificity compared to our automated workflow, is not 
scalable or suitable for genome-wide studies. In summary, leveraging 
the increased read-depth afforded by MAS-ISO-seq, we find improving 
algorithms for de novo isoform identification and clustering, bench-
marking the available isoform quantification pipelines (for example, 
FLAIR36 and TALON37) and producing more complete transcriptome 
annotation references to be crucial areas of future method and resource 
development.
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Quantifying the impact of the sequencing depth via downsam-
pling. We quantify the impact of the sequencing depth gained by 
MAS-ISO-seq on cell type clustering and identification of DE and spliced 
genes by performing a series of in silico downsampling experiments 
from a single MAS-ISO-seq run. More explicitly, we took the set of all 
deconcatenated MAS-ISO-seq transcripts from ‘sample 2’ (37,164,708 
full-length transcripts, comprising 22,613,229 CCS-corrected and 
14,551,479 CCS-uncorrected reads; Supplementary Fig. 8) and ran-
domly subsampled this set to obtain 1 M, 3 M, 5 M, 10 M, 20 M and 30 M 
transcripts. The standard Iso-Seq protocol yields 2–4 M HiFi reads 
(CCS-corrected and rq ≥ 0.99). This read-depth range is indicated in 
Fig. 2g with gray shading for reference. We processed each subsam-
pled dataset identically using the same quantification, normalization, 
clustering and embedding workflow. We computed the ARI between 
the cell clustering of each subsampled long-read dataset and the full 
short-read dataset as follows. Because the appropriate cell clustering 
resolution is practically chosen in relation to biological considerations 
and varies with sequencing depth, we determined the cell clustering 
resolution for each downsampled long-read dataset by sweeping a Lei-
den clustering resolution range (0.5–2.0) and identifying the resolution 
that maximized ARI concordance with the fixed reference short-read 
cell clustering. We also determined the number of DE and DS genes 
across the T-cell subtypes for each downsampling run. The results of 
this analysis are shown in Fig. 2g and Supplementary Fig. 15.

Identification of DS genes. We consider two types of DS statistical 
tests for every expressed gene. In the global DS test, first, we wish to 
determine whether the isoforms of a given gene are DE in different cell 
clusters. To this end, we produce a contingency table with TEC counts 
and cell clusters as rows and columns, and with the aggregated isoform 
expression counts as entries. A nontrivial global DS pattern is equiva-
lent to having a statistical dependence between the columns and rows 
of this contingency table. The latter can be canonically assessed using 
Fisher’s exact test generalized to arbitrary m × n contingency tables 
with m, n ≥ 2. Notably, we found the requirements for fast Chi-squared 
asymptotic approximation to be out of reach for the majority of cases. 
Therefore, we use the fisher.test as implemented in R v4.1.1 to per-
form the test using 1e6 permutations. In cluster-resolved DS test, we 
perform a cluster-resolved DS test for every gene, whereby we wish 
to know whether a gene exhibits differential isoform usage in each of 
the clusters versus the rest. Like before, we form a contingency table 
with two columns (the cluster of interest and the rest), with aggregated 
TEC counts in rows. We similarly obtained a P value by performing 
a permutation-based Fisher’s test for every gene and every cluster. 
Finally, for both tests, we treat the obtained P values as a collection of 
independent hypotheses and adjust the P values for FDR at level α = 0.05 
using the Benjamini–Hochberg step-up procedure.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Links to the datasets used in this study can be found at https://github.
com/broadinstitute/mas-seq-paper-data.
Human tumor-infiltrating CD8+ T cells single-cell RNA-sequencing data 
are available from dbGAP with accession number phs003200.v1.p1.

Code availability
An online repository of code for the Longbow tool used in this study 
can be found at https://github.com/broadinstitute/longbow.
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Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The software tools used to collect raw data from the sequencer and process it into counts / raw gene and isoform expression information are 
below. Additional details are located in the Methods section.  
 
Smart-seq3 data processing 
- Smart-seq3 Alignment and Stitching: zUMls v2.9.4g, STAR v2.5.4b, stitcher.py v1.0 
- Smart-seq3 Quantification of SIRV isoforms: salmon v1.5.1 
- Smart-seq3 Cell Barcode annotation: Cell Ranger v3.1.0 
 
PacBio error correction, MAS-seq data processing and analysis 
- PacBio Read Error Correction: PacBio's ccs v5.0.0 
- MAS-seq Annotation / Filtration / Segmentation / Demultiplexing / Cell Barcode Pseudocount Calculation / Cell Barcode Correction / UMI 
Correction: custom software - Longbow v0.6.4 (https://github.com/broadinstitute/longbow/releases/tag/v0.6.4) 
- MAS-seq Read Data Processing Pipeline (SIRV and T cell, reads -> count matrix): custom software - https://github.com/broadinstitute/
longbow/tree/main/wdl (commit hash: 9844452445cc803f814613e203eaf971814babbc) 
 
Supporting analysis notebooks and scripts 
Supporting analysis notebooks and scripts are listed below (custom software - https://github.com/broadinstitute/long-read-pipelines/tree/
jts_covid_19_workflow I commit hash: 82bfe460778e56ac642942e62638d594f22bd6bf): 
- MAS-seq QC analysis (e.g. ligation heat matrix plotting): MAS-seq_QC_report_template-static.ipynb 
- MAS-seq Cell Barcode & UMI Annotation for SIRVs: docker/lr-10x/tag_mas_sirv_umi_positions.py 
- MAS-seq Raw Cell Barcode & UMI Annotation for T cells: docker/lr-10x/tool.py, SSW v1.2.4 
- Smart-seq3 Cell Barcode extraction: docker/lr-10x/extract_ilmn_bc_conf_scores.py 
- Cell Barcode Count Merging: docker/lr-transcript_utils/python/merge_barcode_counts.py 
- MAS-seq lsoform Expression Count Matrix Creation: docker/lr-transcript_utils/python/create_count_matrix_anndata_from_tsv.py 
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- MAS-seq lsoform Expression Preprocessing: docker/lr-transcript_utils/python/create_count_matrix_anndata_from_tsv.py 
 
Cell barcode pseudocount calculation, cell barcode correction, UMI deduplication, transcriptome generation/comparison 
- MAS-seq Read Alignment and Primary Read Filtration: minimap2 v2.17-r941, samtools 1.10 
- MAS-seq Read UMI deduplication: UMl-tools v1.1.1 
- Novel Transcriptome Annotation / Reference Generation: StringTie2 v2.2.1, gffread v0.12.7

Data analysis The software tools used to process the gene and isoform expression data into additional results are below. Additional details are located in 
the Methods section. 
 
Supporting analysis notebooks and scripts 
Supporting analysis notebooks and scripts are listed below (custom software - https://github.com/broadinstitute/mas-seq-paper-data/tree/
mb_revised_notebooks/ | commit hash: 0c166c63ce4d8ee37c835c89c9693bb65becb51c) 
- An end-to-end reproducible workflow for the short-reads and long-reads scRNA-seq data analysis: scripts/scrna_seq_analysis 
- The in silico downsampling power analysis workflow: scripts/downsampling_analysis 
 
Quantification and single-cell analysis software 
- Short-reads 5' 10x Gene Expression Quantification: Cell Ranger v3.1.0, scanpy v1.7.2, scrublet v0.2.3 
- Gene & lsoform Expression Normalization / Clustering / Embedding: SeuratData v0.2.1, SeuratDisk v0.0.0.9015, sctransform v0.3.2, scanpy 
v1.7.2 
- Diffusion Pseudotime Analysis: scanpy v1.7.2, sctransform v0.3.2 
- CD45 lsoform Annotation Refinement: minimap2 v2.17-r941, StringTie2 v2.2.1 
- Differentially Spliced Gene Identification: R v4.1.1 fisher.test

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The SIRV set 4 datasets generated and analyzed during the current study are available via the Broad Institute FTP server at gsapubftp-
anonymous@ftp.broadinstitute.org:/MasSeqNatBiotech2021 . 
 
Human peripheral blood monouclear cells (PBMC) / tumor-infiltrating CD8+ T cells single-cell RNA sequencing data are available from dbGAP with accession number 
phs003200.v1.p1.  
 
All other data supporting the findings of this study are available from the corresponding authors on reasonable request. 

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed.

Data exclusions Data were not excluded from analysis except as described in the Methods section, which includes filtering steps for excessive read lengths, 
malformed MAS-seq arrays, doublet removal, and filtering non-immune cell clusters of likely primary tumor origin.

Replication We applied the MAS-ISO-seq method independently on three samples (two single-cell samples consisting of tumor-infiltrating CD8+ T cells 
and one bulk RNA sample consisting of a Spike-in RNA Variant Control Mix) and found similar improvements in output yield in all three cases.

Randomization Not applicable to this study; does not include subjects that require allocation into experimental groups.

Blinding Not applicable to this study; does not include subjects that require allocation into blinded experimental groups.

Reporting for specific materials, systems and methods
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used TotalSeq-C antibody mix: TotalSeq - C0048 anti-human CD45 

Antibody (Biolegend; Cat# 368545), TotalSeq - C0103 anti-mouse/human CD45R/B220 (Biolegend; Cat# 
103272), TotalSeq - C0087 anti-human CD45RO (Biolegend; Cat# 304259), and TotalSeq - C0063 anti-human 
CD45RA (Biolegend; Cat# 304163).

Validation Each lot of these antibodies was quality control tested by immunofluorescent staining with 
flow cytometric analysis and the oligomer sequence was confirmed by sequencing. 
TotalSeq™-C antibodies are compatible with 10x Genomics Chromium Single Cell 
Immune Profiling Solution, and were purchased from Biolegend.

Human research participants
Policy information about studies involving human research participants

Population characteristics The two samples used in this study are from male patients age 31 and 59 with metastatic melanoma treated with checkpoint 
blockade therapy as part of standard of care treatment. Both samples used in this study are from male patients diagnosed 
with cutaneous melanoma.

Recruitment All patients analyzed in this study provided written informed consent for the collection of tissue and matched normal blood 
samples for research and genomic profiling, prior to sample collection and processing. No compensation was provided to the 
participants.

Ethics oversight This study was approved by the Dana-Farber/Harvard Cancer Center Institutional Review Boad (DF/HCC Protocol 11-181)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Using the human tumor dissociation kit (Miltenyi Biotec; Cat# 130-095-929), freshly isolated tumors were digested to obtain 
a single cell suspension. Tissue was placed into a 1.5mL Eppendorf tube containing 420μL of DMEM with 10% FCS, 42μL of 
enzyme H, 21μL of enzyme R, and 5μL enzyme A (provided with the kit). The tissue was minced using surgical scissors, and an 
additional 512μL of DMEM with 10% FCS was added to the tube (total volume of 1ml). Next the tissue was incubated for 15 
min at 37°C, 350 rpm in a thermomixer (Eppendorf; F1.5). After incubation, the tissue was further digested using a 1 ml 
syringe plunger over a 50μm filter (Sysmex; Cat# 04-004-2327), making sure to wash the filter with media. Using ACK buffer 
(Gibco; Cat# A1049201), RBC lysis was performed and the sample was finally resuspended in DMEM with 10% FCS in order to 
count and determine the viability of the cells using a manual hemocytometer (Bright-line; Cat# 1492).

Instrument Cell sorting was done on a Sony MA900 cell sorter, model LE-MA900FP

Software Cells were collected using the SONY cell sorter software
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Cell population abundance The fraction of CD3+CD8+ T cell prior to sorting was 14-17%. Post sorting, cell in sorted tubes were reanalyzed on the 
machine using the same gating plots that were used for the actual sorting to evaluate purity. Purity post sorting ranged from 
96-98%.

Gating strategy Sorting of single live CD3+CD8+ T cells (gating on Zombie-low, hCD235a-, hCD45+, hCD3+, hCD8+) was performed using a 
Sony MA900 cell sorter.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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