Biologics

Biologics, biologically manufactured therapies. 

Biological products for biological solutions. Proteins, antibodies and other biological molecules that can influence biological function can be used to target multiple disease conditions. Discovery of potential biologics, and potential uses and targets are currently being developed and are available at UMassMed.

 

  

 

 

 

Browse Our Biologics Inventions:

 

2016

 

2015

 

Title: Incorporation/Packaging Viral/Tumor Antigens in Virus-like Particle. UMMS15-47; Patent Pending.

  • The invention relates to a vaccine for Eptein Barr Virus. The prophylactic is a recombinant virus-like particle (VLP) comprising a Newcastle disease virus (NDV) matrix (M) protein, a NDV nucleocapsid (NP) protein, and one or more tumor-associated EBV antigens that is capable of illiciting CD4+ and CD8+ T cell responses.

Title: Factor H/Fc Chimeric Molecules as Anti-pathogen Immunoadhesins. UMMS15-30, Patent Pending. 

Title: Tet1-Dependent Differentiation of Human Hematopoietic Stem Cell towards NKT And γδ T Cells. UMMS15-18; Patent Pending. 

Title: Broadly Borreliacidal Human Monoclonal Antibodies to OspA and their Uses. UMMS15-03; Patent Pending. 

Back To Top

2014

 

Title: Dual Specific Binding Proteins Directed Against Immune Cell Receptors and Autoantigens. UMMS14-75; Patent Pending. 

Title: Human Antibodies Against Rabies and Uses Thereof. UMMS14-48; Patent Pending. 

Title: Surface Mineralization of Metal Alloys Grafted With Zwitterionic Polymer Brushes. UMMS14-36; Patent Pending. 

  • The invention provides a novel approach to hydrogels with predictable degradation/gelling kinetics, which is useful for many biomedical applications where appropriate gelling kinetics and the timely disintegration of the hydrogel (e.g., drug delivery, guided tissue regeneration) is required. Precisely controlling hydrogel degradation over a broad range in a predictable manner is achieved via a simple but versatile hydrogel platform that allows formulation of hydrogels with predictable disintegration time from within 2 days to >250 days yet comparable macroscopic physical properties.

Title: Expansion of Human Adipocyte White and "Brite/Beige" Progenitors through Angiogenic Expansion of their Vascular Niche. UMMS14-26; Patent Pending.

  • This invention relates to methods of making human adipose capillary progenitor cells (HACAPS), which are capable of giving rise to either white or "Brown-on-white" (Brite) adipose cells, and enriched populations thereof, for reconstructive and metabolic therapy, and for drug discovery. Further, methods of treating subjects by administering HACAPS are provided. 

Title: Alkylated Amphiphilic Polymer Networks for Bioactive Lipid Delivery. UMMS14-16; Patent Pending. 

  • The invention provides unique amphiphilic polymers may be employed as controlled delivery vehicles or tissue engineering scaffolds wherein the delivery of lipophilic or amphiphilic bioactive molecules can be achieved. An amphiphilic biodegradable polymer platform is disclosed herein for the stable encapsulation and sustained release of biomolecules, such as phospholipid spingosine 1-phosphate (SIP) which can be used to promote angiogenesis alone or in conjunction with VEGF.

Back To Top

2013

 

Title: BCR Adapter lgM (BCRAM) for the BCR/TLR Delivery of Autoantigens to Polyclonal Murine and Human B Cell Populations. UMMS13-65; Patent Pending.

  • This technology provides a model for autoantigen activation of B cells that can be used to research and treat the development/progression of autoimmune diseases, such as systemic lupus erythematosus (SLE).  This novel research tool enables the identification of suitable drug targets and provides methods for production of autoantigens.  Specifically, a BCR adapter IgM (BCRAM) is described to exemplify delivery of autoantigens to polyclonal B cell populations resulting in immunoactivation by Toll-like receptor activation.

Title: Mutant A6 T Cell Receptor with Improved Antigen Targeting via Proline Substitution. UMMS13-50; Patent Pending.

  • The present invention provides amino and nucleic acid sequences for high-affinity variants of the DMF5 T-cell receptor.  Further, the invention provides methods of use for the treatment and imaging of melanoma in a patient.

Title: Highly Immunogenic HIV-1 gp120 Antigens and Polyvalent Vaccine. UMMS13-47; Patent Pending.

  • The invention provides codon-optimized DNA's and polypeptides useful for inducing an immune response against HIV.  The compositions and methods provided are based on the discovery that specific polyvalent, primary isolate DNA vaccines can effectively induce an immune response against HIV (e.g., HIV-1), e.g., alone or in combination with boosts of recombinant HIV polypeptide compositions.

Title: Construction of a Trifunctional and Completely Clearable Specific Targeting Agent. UMMS13-45; Patent Pending.

  • This invention provides a novel targeted delivery vehicle designed for enhanced clearing efficiency and reduced non-specific background. The invention discloses a unique pretargeting approach involving a trifunctional targeting construct and related compositions and methods that are useful in therapeutics and diagnosis (including imaging) of various biological and/or pathological conditions and diseases. The trifunctional targeting construct of the invention enables a much enhanced clearing mechanism and significantly reduced non-specific background via the completely clearable antibody construct.

Title: MULTIVALENT LIPOSOME FORMULATIONS. UMMS13-28; Patent 9,408,890.  

  • The present technology relates to the treatment or prevention of infection, by administration of a liposome composition linked to binding targets. The compositions typically bind the virus (or virions), e.g., influenza, or bacteria, e.g., Streptococcus pneumonia, with high affinity to reduce or prevent infectivity. The technology is used to reduce or prevent the effects of a toxin, e.g., ricin, with high affinity to reduce or prevent toxin entry into a cell. Further, this invention discloses sulfated polysaccharides and sulfated polysaccharide compositions, which can prevent or treat viral infection, specifically respiratory syncytial virus (RSV).

Back To Top

2012

 

Title: SCREENING METHODS FOR SPINAL MUSCULAR ATOPHY. UMMS12-67; Patent 9,212,209

  • This technology provides vectors that increase survival of motor neuron (SMN) protein production by an SMN2 gene and methods for treatment of spinal muscular atrophy (SMA). Further discloses is a clonal second generation SMN-luciferase reporter cell line that combines the strengths of both the promoter-based assay and a previous splicing reporter. This assay is much more robust, has lower well-to-well variation, and displays more stable luciferase expression that does not change with serial passage that can be used to identify potential therapeutic agents for SMA.

Title: Anti-tumor Properties of Dickkopf 3b. UMMS12-40; Patent Pending.

  • This invention discloses novel therapeutics and methods for treating tumors and cancers via site-specific delivery of the tumor suppressor Dickkopf 3b (DKK3b). This technology is based on the finding that DKK3 expression is a hallmark of many human cancers and expression levels are inversely related to tumor virulence (e.g., in prostate cancer and ovarian cancer). Further, over-expression of DKK3 has been shown to halt proliferation of prostate cancer cells due to its ability to block the translocation of β-catenin to the nucleus.

Title: SRPX FOR TREATMENT OF CANCER. UMMS12-08; Patent 9,290,744

  •  This technology provides compositions and methods of treatment for lung cancer. The invention is based on a discovery the tumor suppressor, SRPX is found at low levels of expression in solid human tumors compared to normal tissue. When SRPX is introduced at sufficient levels to tumor cells, SRPX can induce apoptosis and senescence to inhibit cellular proliferation. SRPX can easily be administered using the AAV gene therapy method and markedly suppresses lung cancer in mice.

Back To Top

2011

 

Title: RECOMBINANT HIV-1 GP120 IMMUNOGEN WIH THREE DIFFERENT V3 LOOPS FROM VIRUSES OF DIFFERENT CLADES. UMMS11-60; Patent 7,847,085 B2

  • This patented technology provides prophylactic DNA constructs that encode a recombinant HIV-1 gp120 envelope peptide, in which either the V1/V2 loop and the V4 loop, or all three variable loops, including V3, are replaced with a V3 sequence each of which is from a different viral isolate. These constructs generate a more broadly reactive neutralizing antibody than conventional gp120 or V3 DNA or polypeptide immunogens.

Title: The Use of the Salmonella Typhimurium Protein, SipA, as Multidrug Resistance (MDR) Reversal Agent. UMMS11-17; Patent Pending. 

  • The invention provides compositions and methods to revert multi-drug resistance in human cancers by inhibiting P-gp and/or p53 with purified SipA.

Back To Top

2010

 

Title: ANTI-SOD1 ANTIBODIES AND USES THEREOF. UMMS10-69; Patent 9,109,037

  • This invention discloses a panel of newly discovered human monoclonal antibodies against human SOD1 protein.  There are two types of SOD1 antibodies available: 1) one that binds to all forms of SOD1 and 2) one that binds to the misfolded form of SOD1. Mutated SOD1 is associated with 20% of inheritable forms of Amyotrophic Lateral Sclerosis (ALS) and blocking its function is protective. These monoclonal antibodies present a unique therapeutic opportunity to treat ALS with an immunologically targeted approach. 

Title: SULFONATE COMPOUNDS. UMMS10-48; Patent 9,329,185

  • This invention provides a new chemically-stable platform for delivering hydrophobic molecules in to cell cytoplasm. Sulfonates are used to impart water-solubility to hydrophobic molecules but does not readily cross cellular membrane to access cellular compartments. Thus, the TFA-labile sulfonate protection group helps to overcome the difficulty in delivering hydrophobic molecules to the intracellular environment. Currently existing protection molecules are complicated and expensive to produce while it also requires additional steps to remove its byproducts after TFA mediated deprotection. This new invention TFMB sulfonate esters are unique because they are 1) stable to nucleophilic attack (e.g. sodium iodide and piperidine), 2) synthesized in one step from commercially-available materials, and 3) easily removable with pig liver esterase (~2min). This new UMass Medical School sulfate protection group provides new opportunities for research molecule delivery of hydrophobic drugs to mammalian cells.

Title: PEPTIDE MIMICS OF CONSERVED GONOCOCCAL EPITOPES AND METHODS AND COMPOSITIONS USING THEM. UMMS10-04; Patent 7,871,628 

  • The present invention relates to peptide mimics of a conserved gonococcal lipo-oligosaccharide (LOS) epitope of Neisseria gonorrhoeae, which epitope is not found on human blood group antigens. This invention also relates to methods and compositions using such peptide mimics for the prophylaxis of gonorrheal infections.

Back To Top

2009

 

Title: VIRUS-LIKE PARTICLES AS VACCINES FOR PARAMYXOVIRUS UMMS09-28; Patent 9,216,212 

  •  This patented invention provides a low risk, highly effective paramyxovirus vaccine that is compatible with population-wide distribution marketing goals of low cost and high production rates. The disclosed vaccine contains a virus-like particle (VLP) comprising a) Newcastle disease virus matrix (M) protein, b) Newcastle Disease Virus heamagglutinin-neuraminidase (HN) protein transmembrane domain (TM) protein, c) Newcastle Disease Virus heamagglutinin-neuraminidase (HN) protein cytoplasmic domain (CT) protein, and d) Respiratory Syncytial Virus (RSV) ectodomain protein, wherein said transmembrane (TM) protein is flanked by said cytoplasmic domain (CT) protein and said ectodomain protein.

Title: COMPLEMENT FACTOR H-BASED ASSAYS FOR SERUM BACTERICIDALACTIVITY AGAINST NEISSERIA MENINGITIDISUMMS09-17; Patent 8,476,032 

  • This invention discloses an assay method for detecting anti-Neisseria antibodies. Human factor H (fH) is a virulence factor that helps Neisseria to resist complement-mediated killing, thus circumventing the host’s innate immune response. Higher serum fH levels may correlate to patient susceptibility to infection. Neisserial factor H binding protein (fHBp) can be hindered by a human amino acid sequence revealed in the present technology, to facilitate accurate detection of Neisseria that exceeds the capability of existing methods. A reaction mixture containing bactericidal anti-Neisseria antibodies, a fH polypeptide comprising an amino acid sequence of human Short Consensus Repeat 6 sources of non human complement (SCR), and a Neisseria bacterium. This invention additionally discloses an animal model of Neisseria infection.

Title: INTRACELLULAR DNA RECEPTORUMMS09-11; Patent 8,334,101 

  • The innate immune system recognizes non-self genetic material and mounts a defensive immune response. However, self cytosolic DNA at times gets targeted and the process by which this phenomenon occurs has been largely unknown. The inventors have discovered PISA (PYHIN protein stimulating ASC), a receptor found to be necessary for activation of the ACS/caspase-1 axis of innate immunity in response to recognition of self cytosolic DNA. This invention discloses methods for identification and compounds found to modulate the PISA receptor and it’s downstream immune response.

Title: METHODS, COMPOSITIONS AND VACCINES RELATING TO NEISSERIA MENINGITIDIS ANTIBODIEUMMS09-08; Patent 9,475,864

  • This invention reports the discovery of serum IgG of different individuals that block antibody (Ab) activity targeted against Neisseria membrane lipoprotein H.8. Blocking Ab activity may predispose such individuals to developing invasive disease with N. meningtitidis or decrease the efficacy of vaccines. This finding can explain the variability between individual susceptibility and provide new avenue for treatment and increasing efficacy of existing treatments.

Title: RESPIRATORY SYNCTIAL VIRUS (RSV) SEQUENCES FOR PROTEIN EXPRESSION AND VACCINES. UMMS09-03; Patent 8,580,2709,168,294  

  • This invention discloses a sequence of efficient cleavage point of F protein, of the respiratory syncytial virus (RSV) that causes infection. The cDNA has an optimized codon of F protein, which may be useful for developing a more effective RSV vaccine.

Back To Top

2008

 

Title: Use of Cathepsin B Inhibitors for the Treatment of IL-1 Related Diseases. UMMS08-51; Patent Pending.  

  • This innovation describes detailed mechanisms of how immune cells recognize microorganisms (non-self) from host (self). The cytoplasmic receptor complex NALP3 inflammasome has been found to react to a variety of crystals such as silica crystals or cholesterol crystals, all of which were found to require phagocytosis for activation. By inhibiting phagosomal acidification, the inventors were able to prevent activation of NALP3 in the presence of the crystal activators. Understanding these mechanisms may be valuable to research into IL-1 related diseases of sterile inflammation including atherlosclerosis, amyloidosis, Alzheimer silicosis, asbestosis and others.

Title: Monoclonal Antibody Producing Cell Lines called 2C3-like Cell Lines and the 2C3-like Antibodies that They Produce. UMMS08-34; Patent Pending.

  • This new invention spans from the discovery of novel antibodies and an antigen binding fragment that that bind surface membrane proteins of Neisseria species (e.g. N. gonorrhoeae and N. meningitidis). This invention can be applied to diagnostic, therapeutic, and potentially preventative methods for managing Neisseria infections.

Title: Use of TRAIL Protein as Antiviral Agent. UMMS08-01; Patent Pending. 

  • This new invention discloses an antiviral molecule, TRAIL, which reduces cellular antiviral effects, and may provide an opportunity for treatment of RNA virus infection.  Blocking of TRAIL significantly reduces cellular antiviral effects, thus the invention proposes the use of TRAIL as therapy to reduce viral burden. 

  

▴ Back To Top
Section Menu To Top